The Weekly Top Five – 05/26/2011

By Tiffany Trader

May 26, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover the NC State effort to overcome the memory limitations of multicore chips; the sale of the first-ever commercial quantum computing system; Cray’s first GPU-accelerated machine; speedier machine learning algorithms; and the connection between shrinking budgets and increased reliance on modeling and simulation.

Research Technique Addresses Multicore Memory Limitations

A new technique developed by researchers at North Carolina State University promises to boost multicore chip performance from between 10 to 40 percent. The new approach is two-pronged, using a combination of bandwidth allocation and “prefetching” strategies.

One of the limitations to multicore performance is the memory problem. Each core needs to access off-chip data, but there is only so much bandwidth available. With the proliferation of multicore designs, the data pathway is all the more congested. The NC State researchers developed a system of bandwidth allocation based on the fact that some cores require more access to offchip data than others. Implementing an on-chip memory store (cache-based) allows the chip to prefetch data. When prefetching is used in an intelligent as-needed basis, performance is further enhanced.

With boths sets of criteria working in tandem, “researchers were able to boost multicore chip performance by 40 percent, compared to multicore chips that do not prefetch data, and by 10 percent over multicore chips that always prefetch data,” the release explained.

First-Ever Commercial Quantum Computing System Sold

Vancouver-based research outfit D-Wave Systems, Inc. began generating buzz in 2007 when the company announced it had built the first commercially-viable quantum computer. The claim was difficult to verify and received a fair amount of skepticism.

Now four years later, D-Wave has announced the first sale of a quantum computing system, known as D-Wave One, to Lockheed Martin Corporation. As part of a multi-year contract, “Lockheed Martin and D-Wave will collaborate to realize the benefits of a computing platform based upon a quantum annealing processor, as applied to some of Lockheed Martin’s most challenging computation problems.” D-Wave will also be providing Lockheed with maintenance and related services.

The D-Wave One relies on a technique called quantum annealing, which provides the computational framework for a quantum processor. It was also the subject of an article published in the May 12 edition of Nature. The computer’s 128-qubit processor, known as Rainier, relies on quantum mechanics to tackle the most complex computational problems. While Lockheed Martin’s exact interest in the system was not specified, suitable applications include financial risk analysis, object recognition and classification, bioinformatics, cryptology and more.

A Physics World article cited expert collaboration regarding the system’s authenticity. MIT’s William Oliver, although not part of the research team, went on record as saying: “This is the first time that the D-Wave system has been shown to exhibit quantum mechanical behaviour.” Oliver characterized the development as “a technical achievement and an important first step.”

Further coverage of this historic event, including an interview with D-Wave co-founder and CTO Geordie Rose, is available here.

Cray Debuts GPU-CPU Supercomputer

The newest Cray supercomputing system, called the Cray XK6, relies on processor technology from AMD and NVIDIA to achieve a true hybrid design that offers up to 50 petaflops of compute power. Launched at the 2011 Cray User Group (CUG) meeting in Fairbanks, Alaska, the supercomputer employs a combination of AMD Opteron 6200 Series processors (code-named “Interlagos”) and NVIDIA Tesla 20-Series GPUs, and provides users with the option to run applications with either scalar or accelerator components.

The XK6 is the first Cray system to implement the accelerative power of GPU computing, and Barry Bolding, vice president of Cray’s product division, highlights this fact:

“Cray has a long history of working with accelerators in our vector technologies. We are leveraging this expertise to create a scalable hybrid supercomputer — and the associated first-generation of a unified x86/GPU programming environment — that will allow the system to more productively meet the scientific challenges of today and tomorrow.”

Cray already has its first customer; the Swiss National Supercomputing Centre (CSCS) in Manno, Switzerland, is upgrading its Cray XE6m system, nicknamed “Piz Palu,” to a multi-cabinet Cray XK6 supercomputer.

The Cray XK6, which is scheduled for release in the second half of 2011, will be available in both single and multi-cabinet configurations and scales from tens of compute nodes to tens of thousands of compute nodes. Upgrade paths will be possible for the Cray XT4, Cray XT5, Cray XT6 and Cray XE6 systems.

For additional insight into this Cray first, check out our feature coverage.

PSC, HP Labs Speed Machine Learning Algorithm with GPUs

Researchers from the Pittsburgh Supercomputing Center (PSC) and HP Labs have figured out how to speed the process of key machine-learning algorithms using the power of GPU computing. Specifically, the team has achieved nearly 10 time speed-ups with GPUs versus CPU-only code, and more than 1,000 times versus an implementation in an unspecified high-level language. Machine learning is a branch of artificial intelligence that “enables computers to process and learn from vast amounts of empirical data through algorithms that can recognize complex patterns and make intelligent decisions based on them.”

The application the research team is working with is called k-means clustering, popular in data analysis and “one of the most frequently used clustering methods in machine learning,” according to William Cohen, professor of machine learning at Carnegie Mellon University.

Ren Wu, principal investigator of the CUDA Research Center at HP Labs, developed the GPU-accelerated cluster algorithms. Wu then teamed up with PSC scientific specialist Joel Welling to test the algorithms on a real-world problem, which used data from Google’s “Books N-gram” dataset. This type of N-gram problem is common in natural-language processing. The researchers clustered the entire dataset, with more than 15 million data points and 1,000 dimensions, in less than nine seconds. This kind of breakthrough will allow future research to explore the use of more complex algorithms in tandem with k-means clustering.

Lean Budget Increases Government Reliance on Modeling and Simulation

The Institute for Defense & Government Advancement (IDGA) put out a brief statement last week, suggesting a link between declining budgets and a growing demand modeling & simulation (M&S) tools.

Last week, the Army and Department of Defense (DoD) awarded a $2.5 billion contract to Science Applications International Corporation (SAIC) for a combination of planning, modeling, simulation and training solutions. According to the IDGA, “this contract signifies the growing need for simulation training to prepare troops for combat. Despite budget constraints, Modeling and Simulation (M&S) is expanding as technological improvements develop. M&S is the more viable and cost-effective option for tomorrow’s armed forces.”

The IDGA also announced that its 2nd Annual Modeling and Simulation Summit will explore the latest technological advancements and look at the lessons to be learned from recent efforts. This event will have a focus on military strategies for M&S, such as Irregular Warfare and Counter-IED training.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire