The Weekly Top Five – 06/02/2011

By Tiffany Trader

June 2, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover NERSC’s acceptance of its first petascale supercomputer, the potential for magnets to revolutionize computing; NCSA’s private sector supercomputer; the official debut of Australia’s MASSIVE supercomputer; and PRACE’s biggest supercomputing allocation yet.

NERSC Accepts ‘Hopper’ Supercomputer

The National Energy Research Scientific Computing Center (NERSC) has officially accepted its first petascale supercomputer. The Cray XE6 system was named “Hopper” in honor of the renowned American computer scientist Grace Murray Hopper. The supercomputer will benefit more than 4,000 researchers and will support advancements in the fields of wind energy, extreme weather, and materials science.

NERSC Director Kathy Yelick, commented on this latest achievement:

“We are very excited to make this unique petascale capability available to our users, who are working on some of the most important problems facing the scientific community and the world. With its 12-core AMD processor chips, the system reflects an aggressive step forward in the industry-wide trend toward increasing the core counts, combined with the latest innovations in high-speed networking from Cray. The result is a powerful instrument for science. Our goal at NERSC is to maximize performance across a broad set of applications, and by our metric, the addition of Hopper represents an impressive five-fold increase in the application capability of NERSC.”

NERSC is the U.S. Department of Energy’s primary high-performance computing facility for scientific research. A pictorial journey of the delivery and installation process can be found here.

Chameleon Magnets Hailed as Potential Game Changers

Researchers at the University at Buffalo (UB) are studying the behavior of magnets and exploring their potential to revolutionize the field of computing. The researchers are asking questions about the nature of magnets and whether it’s possible to control their behavior to create more versatile transistors.

In the current issue of Science, University at Buffalo researcher Igor Zutic, a theoretical physicist, together with fellow UB physicist John Cerne, discuss the results of a Japanese study that demonstrates the potential to turn a material’s magnetism on and off at room temperature.

The release explains the basis for the research:

A material’s magnetism is determined by a property all electrons possess: something called “spin.” Electrons can have an “up” or “down” spin, and a material is magnetic when most of its electrons possess the same spin. Individual spins are akin to tiny bar magnets, which have north and south poles.

Zutic explains that the ability to switch a magnet “on” or “off” is revolutionary, bringing with it the promise of magnet- or spin-based computing technology — called “spintronics.” Spintronics-based devices will store and process data by exploiting electrons’ “up” and “down” spins. These spin states are similar to the ones and zeros found in standard digital transmission, but the technology makes it possible for more data to be stored using less energy.

Chameleon magnets could set the stage for a new era in processor design, and according to the researchers, may one day bring about the “seamless integration of memory and logic by providing smart hardware that can be dynamically reprogrammed for optimal performance of a specific task.”

NCSA Brings Supercomputing to Industry with iForge

The National Center for Supercomputing Applications (NCSA) is launching a supercomputer, called iForge, which will be dedicated to the center’s industrial partners. Rolls-Royce, Boeing, and Caterpillar are few of the companies that will be putting this computer cycles to work on a range of modeling and simulation problems.

A 22-teraflop high-performance computing cluster, iForge employs 121 Dell servers and a mix of Intel Xeon AMD Opteron processors designed to optimize workflows. 48 cores worth of high-level AMD parts are on hand to support memory-intensive pre- and post-processing jobs and highly-threaded applications. The system’s nodes are connected with 40 gigabit QDR InfiniBand from Mellanox. iForge doubles as a Linux-cluster or a Windows machine, since it runs both Red Hat Enterprise Linux and Windows HPC Server 2008 R2 operating systems.

In a prepared statement, Merle Giles, director of NCSA’s Private Sector Program, comments:

“iForge is a unique resource at NCSA, as it is designed specifically for commercial and open-source applications widely used by industry. This machine offers our Private Sector Partners several platforms to reach higher and higher levels of scaling and performance for physics-based modeling and simulation applications.”

More information about NCSA’s Private Sector Program is available at industry.ncsa.illinois.edu.

Australia’s MASSIVE Supercomputer Opens for General Use

Australia’s MASSIVE (Multi-modal Australian ScienceS Imaging and Visualisation Environment) supercomputer is now open for general use. The resource is part of a collaboration that includes the Victorian Partnership for Advanced Computing (VPAC), the Australian Synchrotron, CSIRO, Monash University, and the NCI. The State Government of Victoria also provided funding for the project.

The MASSIVE supercomputer is comprised of two tightly-coupled high performance computers — two 42 node IBM iDataPlex systems, each having 84 NVIDIA M2070 GPUs, 504 Intel Westmere compute cores, and 2 TB of memory. The combined resource offers 1,008 CPU-cores and 168 NVIDIA M2070 GPUs. Ten nodes have been upgraded to advanced M2070Q GPUs and 192 GB memory each, to address the specific requirements of interactive visualization workloads. Each system uses a high performance GPFS parallel file system, and both Linux and Windows HPC Cluster-based services are available.

The allocation process is open to the Australian research community and is managed by the NCI Merit Allocation Scheme. Researchers with a need for MASSIVE’s extensive rendering and visualization capabilities will be given priority, as will those whose applications leverage GPU acceleration. The next call for proposals starts in November for access in 2012, but early access may be sought by sending an email request to [email protected]. Additional information regarding the allocation process is available at www.massive.org.au/access.

PRACE Now Accepting Applications for Supercomputing Time

The Partnership for Advanced Computing in Europe (PRACE), which provides Europe with access to cutting-edge supercomputing resources, is now accepting submissions for its third call for proposals. Successful applicants will be able to access a total of 3 Tier-0 supercomputers and 17 national Tier-1 systems.

This call marks the first time that PRACE affiliates will get to use the Tier-0 “HERMIT” supercomputer. This Cray XE6 system offers one petaflop peak performance and will be installed in the fall at the High Performance Center of University Stuttgart. A planned upgrade is already in the works for the 2013, which will supply “HERMIT” with an additional 3-4 petaflops of power, creating a system with a possible 5 petaflops of peak performance.

The one-petaflop IBM BlueGene/P system, JUGENE, based at Germany’s Jülich Supercomputing Centre, and the 1.6 petaflop Bull Bullx cluster, CURIE, hosted by the French research agency, CEA, will also be available as part of this allocation. And for the first time, seventeen Tier-1 systems are also being included in the PRACE call. These Tier-1 resources were previously overseen by DEISA (the Distributed European Infrastructure for Supercomputing Applications) and were part of DECI calls, which now fall under the purview of PRACE.

More information about the PRACE allocation process is available at www.prace-ri.eu/hpc-access. The current application period runs from May 2 – June 22, 2011.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire