Biotech Company Forges Path to High Performance Healthcare

By Michael Feldman

July 6, 2011

GNS Healthcare is one of those companies that wouldn’t have existed in the 20th century. It promotes itself as “a healthcare IT company that applies technology to optimize patient treatment.” As such, GNS is at the forefront of a new era of drug development and delivery that is moving personalized medicine from theory into practice.

Headquartered in Cambridge, Massachusetts, GNS is the brainchild of Cornell physicists Colin Hill and Iya Khalil, who founded the original company in 2000, under the name Gene Network Sciences. Hill is now the CEO and president of GNS and Khalil is the company’s Executive VP. Their idea was to exploit supercomputing technologies, in the form of “big data” analytics, to identify genetic biomarkers for drug efficacy.

Such an approach requires the ingestion of large volumes of genetic and clinical data, along with lots of data-intensive processing, both of which were expensive propositions a decade ago. In 2000, a modest-sized cluster with a few dozen processors would take a year to analyze a person’s genetic profile.

But technology has caught up to GNS’ aspirations. Thanks to cheaper DNA sequencing technologies to generate the raw data and much more powerful (and less expensive) high performance computing systems to process it, such analytics is now within the reach of commercial firms. Hill believes supercomputing, in particular, will enable advances in drug R&D that would otherwise have been impossible.

Much of that advancement is wrapped around the idea of personalized medicine. One of its principle tenets is to better match drugs to an individual’s genetic makeup in order to make treatments safer and more effective. These compounds work at the molecular level and because even small genetic variations can produce big differences in a person’s physical makeup, drug efficacy can vary significantly from one person to another. In a nutshell, the idea is to correlate these pharmaceuticals with a person’s unique molecular characteristics.

Pharmaceutical companies, healthcare providers and patients all stand to benefit from better targeted drugs since, in theory at least, it drives down costs for everyone and delivers better results. Given the public’s focus on reigning in healthcare expenses and the industry’s concern with producing lawsuit-free drugs that will survive long enough to recoup development investments, a technology that delivers on both fronts would be welcome indeed.

To that end, GNS has developed a software platform that is able to analyze how genes, proteins and drugs interact in a virtual model. Dubbed Reverse Engineering/Forward Simulation (REFS), the software uses HPC clusters, or in some cases bona fide supercomputers, to sift through the data and figure out how all the bio-bits fit together.

In essence, the GNS software delivers a virtual clinical trial. But instead of taking millions of dollars and years to accomplish, the simulated version can be executed for a fraction of the cost in weeks or even just days. No one is ever put at risk, and there are no waivers to sign.

To accomplish this in silico, REFS creates a system interaction model of all the components represented by the data (reverse engineering) and then uses billions of queries (forward simulation) to reveal the most important genes and proteins driving those interactions. Importantly, it can also predict interactions for “what if” scenarios.

The technology was interesting enough to get the attention of DARPA, the US Department of Defense’s research arm, which funded a case study on the GNS work. The effort, in collaboration with the Council on Competiveness, was part of a project to demonstrate the business case for high-end modeling and simulation technologies. This particular case study focused on a recent GNS collaboration with drug R&D specialist Biogen Idec.

The work with Biogen was to build a computational model for identifying novel drugs for rheumatoid arthritis sufferers. Today about a third of arthritis patients do not respond to the most commonly used anti-inflammation therapies (anti-TNF drugs). Since 1 to 2 percent of the world’s population suffers from this condition, there is a lot of interest in developing more effective treatments.

The project with Biogen involved sifting through the genetic data from 70 arthritis patients to look for single nucleotide polymorphisms (SNPs), which are short sequences of DNA in which a nucleotide base in the sequence has been is altered. Gene expression data from the patients’ blood as well as clinical information like pain levels, swollen joints, and other blood markers, were also encapsulated. Models were built from this data, which could then subsequently be used to conduct simulations with different drug compounds.

The data- and compute-intensive nature of the process is hard to fathom. Although only 70 patients were evaluated, it involved correlating hundreds of thousands of genetic variables on top of numerous clinical variables for each patient. Trillions of models were then constructed against each dataset. For example, REFS can simulate the “knock-down” of an individual gene by a certain drug, and then evaluate the result. With so many genes in the mix, the combinations can quickly escalate.

This was the first time a computer model of rheumatoid arthritis was developed that could be used to test new drugs and target pathways for individual patients. And it’s not just that they’ve replace clinical trials with virtual ones. The sheer number of combinations that can be tested, not to mention the ability to virtualize risky drug scenarios means these simulations can go far beyond clinical testing. You just need enough computing horsepower make it work.

From Hill’s perspective, the key technology to move this technology forward is high performance computing. “We have this strong conviction that the major game-changing advances in the biomedical sciences, drug development and patient care will not occur on a short time-scale without the extreme use of supercomputing,” he says.

GNS itself has only a modest HPC setup, but its computational demands are nearly insatiable. Much of the time it uses big machines like IBM Blue Gene supercomputers (on-demand) and larger clusters from its partners. Besides Biogen Idec, Johnson & Johnson and Pfizer have teamed with GNS on other drug R&D projects, and the company is also engaged with a number of academic and non-profit research organizations.

If solutions like that from GNS deliver on their promise, they will have arrived in the nick of time. Skyrocketing labor and drug development costs and aging populations are straining healthcare delivery in much of the developed world. For less economically fortunate nations, 21st century healthcare is simply out of reach. For both rich and poor, the era of personalized medicine can’t happen too soon enough.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire