Researchers Spin Up Supercomputer for Brain Simulation

By Michael Feldman

July 7, 2011

Under the category of “Grand Challenge” applications, perhaps none is grander than simulation of the human brain. Reflecting the complexity and scale of the brain with current computer technology is truly a daunting task. But a group of researchers and computer scientists at a number of UK universities are attempting to do just that under a project named SpiNNaker.

SpiNNaker, which stands for Spiking Neural Network architecture, aims to map the brain’s functions for the purpose of helping neuroscientists, psychologists and doctors understand brain injuries, diseases and other neurological conditions. The project is being run out of a group at University of Manchester, which designed the system architecture, and is being funded by a £5m grant from the Engineering and Physical Sciences Research Council (EPSRC). Other elements of the SpiNNaker system are being developed at the universities of Southampton, Cambridge and Sheffield.

For the casual observer, constructing a facsimile of the most complex organ in the human body from digital technology may see like a natural fit for computers. The view of the brain as a biological processor (and the processor as a digital brain) is well entrenched in popular culture. But the designs are fundamentally different.

Operationally, computers are precise, extremely fast and deterministic; brains are imprecise, slow, and non-deterministic. And, of course the underlying architectures are completely different. Computers relying on digital electronics, while the brain employs a complex mix of biomolecular structures and processes.

The SpiNNaker design meets the architecture of the brain halfway by going for lots of simple, low-power computing units, in this case, ARM968 processors. The initial Manchester-designed SpiNNaker multi-processor is a custom SoC with 18 of these processors integrated on-chip. (The original spec called for 20 processors per chip.) The multi-processor also incorporates a local bus, called Network-on-Chip or NoC, which links up the individual processors and off-chip memory. Each SpiNNaker node is reported to draw less than one watt of power, while delivering the computational throughput of a typical PC.

The design is purpose-built to simulate the action of spiking neurons. Spiking in this context means when neurons are stimulated above a certain threshold level to generate an event that can be propagated across a neural net. But instead of using neurotransmitters to do this, the computer is just passing data packets around.

To be truly useful, the spiking needs to happen in real-time. Fortunately, this is where computer technology shines. Electrical communication is actually more efficient than the biochemical version, so nothing exotic needs to be done in the hardware to make all this magical neural spiking a virtual reality.

And that may happen soon. The design phase of the project is coming to a close and the SpiNNaker team is starting to gather the pieces together. According to a news release this week, SpiNNaker chips were delivered in June (from Taiwan — presumable TSMC), and have passed their functionality tests. The plan is to build a 50,000-node machine with up to one million ARM processors.

While that seems like a lot, researchers estimate that it will only be enough to represent about one percent of the real deal. A human brain contains around 100 billion neurons along with 1,000 million connections and a single ARM processor in the SpiNNaker chip can only handle 1,000 neurons. The good news is that one percent may be enough to answer a lot of questions about the functional operation of the brain.

Even at one percent, the scale of the machine is probably the trickiest part of the project. With so many processors in the mix, there are bound to be individual failures at fairly regular intervals. To deal with the inevitable, the designers made SpiNNaker fault tolerant at multiple levels. For example, each of the ARM processors can be disabled if they fail at start-up and a chip can remain functional even if “several processors fail.” If an entire chip goes south, data can be rerouted to neighboring chips thanks to redundant inter-chip links.

The other challenge to scaling out is power, but here is where the ARM architecture pays dividends. The initial system of 50,000 nodes is estimated to draw just 23 KW to 36 KW of power. By supercomputing standards, that’s just a pittance.  Of course, judged against the 20 watt version in our heads, SpiNNaker has a ways to go.

The power profile suggests that if there are no inherent scaling limitations in the hardware or software, the design could conceivably be used to build a machine that would support a “complete” human brain simulation for just a few megawatts. With improved process technology, that could easily slip into the sub-megawatt level.

For all that, SpiNNaker isn’t designed to simulate higher level cognitive features — the most interesting function of the brain. Inevitably that will require more complex hardware and software. So even if someone builds a super-sized SpiNNaker, it won’t come close to the functionality of the 100 percent organic version anytime soon.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire