GPU Computing Wades Into the Mainstream

By Michael Feldman

July 14, 2011

The idea that the most successful technologies become invisible doesn’t yet apply to GPU computing, but it’s getting there. This week there were a handful of major HPC system announcements based on GPU-equipped platforms, but you wouldn’t have known that from the headlines. No longer the interloper in high performance computing, GPUs are beginning to fade into the background, just like every other mainstream HPC technology.

On Monday, Bright Computing announced that Drexel University has installed a large cluster to be used for its astrophysics and molecular dynamics research. In this case large means 176 peak teraflops — not bad for a university with less than 25 thousand students. Actually the system’s peak performance is even larger than that. The 176 teraflops are attributed to 68K NVIDIA GPU cores in the machine. That works out to about 133 of the latest 512-core Tesla GPUs at 1.33 double-precision teraflops per processor. The CPUs in the system were even more invisible though; they weren’t even mentioned.

Bright Computing’s notable contribution here is its support for GPUs — CUDA 4.0 specifically — in its cluster management offering. Today, though, all cluster and workload managers support GPU computing to one extent or another. They have to, given the increasing level of penetration of GPUs in HPC clusters. The idea is to help automate the management of the GPU resources in the cluster so that the system admins don’t have to treat these CPU-GPU machines like exotic animals.

On Wednesday, SGI announced Swinburne University of Technology in Australia is buying a Rackable C3108 /Altix UV combo system that will deliver 130 teraflops. Like the Drexel super, the Swinburne machine will be used for astrophysics computations. And, if you weren’t paying close attention, you might not have noticed that the system will incorporate NVIDIA GPUs, in this case, a combination of Tesla C2070 and M2090 GPUs. Although no specifics were offered about the number of Tesla parts employed, it’s a good bet that most of the FLOPS are from the GPU side.

Meanwhile the gang at T-Platforms was talking up the Graph 500 performance of their Lomonosov super, installed at Moscow State University. Although Lomonosov was ranked third on the list, it set a new performance record, hitting 43.5 GE/s (billion edges processed per second). The metric is an attempt to measure the ability of computers to perform data-intensive operations, rather than the TOP500 Linpack benchmark, which measures a computer’s floating-point computational prowess.

Lomonosov was recently upgraded to 1.3 petaflops, thanks to — you guessed it — NVIDIA GPUs. In this case, the upgrade added 863 GPU teraflops (courtesy of T-Platforms’ NVIDIA Tesla X2070-equipped TB2-TL blades) to Lomonosov’s existing 510 teraflops. It is not clear, though, whether the GPU parts were used to achieve the record-breaking Graph 500 result.

Jumping now to China, there was the news that the Tianhe-1 supercomputer has gone into operation at the Changsha Supercomputer Center. It looks like the story originated with China Central Television (CCTV) and was subsequently picked up by the IDG News Service. The system, which is reported to reach a peak performance of 1.1 petaflops, apparently went into production last weekend.  According to the report, by October the system will be upgraded to 3 petaflops.

Tianhe-1 has an odd history. It was the world’s first “petascale” supercomputer that employed GPUs, in this case, AMD/ATI Radeon ATI Radeon HD 4870 2 processors. It debuted in the November 2009 TOP500 rankings as a 1.2 (peak) petaflop machine, garnering itself the number five position on the list. By November 2010, it had disappeared from TOP500, replaced by the now-famous Tianhe-1A, a much larger GPU-equipped Chinese super that delivered 4.7 peak petaflops using NVIDIA parts.

What happened to the Tianhe-1 since last November is a mystery. But given the peak petaflops has been shaved by 100 teraflops, I suspect the configuration was modified. Whether that means different GPUs, less GPUs, or no GPUs remains to be seen.  If you’re interested in the IDG/CCTV report, take a look at the YouTube video.

By the way, even though these CPU-GPU machines are becoming more commonplace, I’ve noticed that the naming convention for them has not quite settled. Some are calling them hybrid systems, while others are referring to them as heterogeneous machines. My preference is the latter, since hybrid implies a mixing of DNA, which I take to mean the processor’s transistors. Since the GPUs and CPUs are still discrete entities, heterogeneous seems the better nomenclature here.

Even the AMD Fusion chips and future Project Denver processors from NVIDIA, which mix CPU and GPU components on-chip, still seem more heterogeneous than hybrid to me. But I have a feeling when GPUs are integrated to this level and, more importantly, when applications are oblivious to the mix of underlying computational units, we’ll just be calling them processors again. That’s what happens when technology becomes invisible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire