IBM Demos Record-Breaking Parallel File System Performance

By Michael Feldman

July 22, 2011

A research group at IBM has come up with a prototype parallel storage system that they claim is an order of magnitude faster than anything demonstrated before. Using a souped-up version of IBM’s General Parallel File System (GPFS) and a set of Violin Memory’s solid-state storage arrays, the system was able to scan 10 billion files in 43 minutes. They say that’s 37 times faster than the last time IBM topped out GPFS performance in 2007.

The idea behind 10-billion files scans is demonstrate GPFS can keep pace with the enormous flood of data that organizations are amassing. According to IDC, there will be 60 exabytes of digitized data this year and these data stores are expected to increase 60 percent per year. In a nutshell, we’re heading for a zettabyte world.

But it’s not just the aggregate size of storage. Individual businesses and government organizations will soon be expected to actively manage 10 to 100 billion files in a single system. The HPCS DARPA program requires a trillion files in a single system.

That’s certainly beyond the capabilities of storage systems today. Even parallel file systems designed for extreme scalability, like GPFS and Lustre currently top out at about 2 billion files. But the limit is not storage capacity, it’s performance.

While hard drive capacity is increasing at about 25 to 40 percent per year, performance is more in the range of 5 to 10 percent. That’s a problem for all types of storage I/O, but especially for operations on metadata. Metadata is the information that describes file attributes, like name, size, data type, permissions, etc. This information, while small in size, has to be accessed often and quickly — basically every time you do something with a file. When you have billions of files being actively managed, the metadata becomes a choke point.

Typically metadata itself doesn’t require lots of capacity. To store the attributes for 10 billion files, you only need four 2TB disks; they just aren’t fast enough for this level of metadata processing. To get the needed I/O bandwidth, you’d actually need around 200 disk drives. (According to IBM, their 2007 scanning demo of 1 billion files under GPFS required 20 drives.) Using lots of disks to aggregate I/O for metadata is a rather inefficient approach, considering the amount of power, cooling, floor space and system administration associated with disk arrays.

The obvious solution is solid-state storage, and that is indeed what the IBM researchers used for their demo this week. In this case, they used hardware from Violin Memory, a maker of flash storage arrays. According to the IBM researchers, the Violin gear provided the attributes needed for the extreme levels of file scan performance: high bandwidth; low I/O access time, with good transaction rate at medium sized blocks; sustained performance with mixing different I/O access patterns; multiple access paths to shared storage, and reliable data protection in case of NAND failure.

When I asked the IBM team why they opted for Violin in preference to other flash memory offerings, they told me the Violin storage met all of these requirements as well or better than any other SSD approach they had seen. “For example, SSDs on a PCI-e card will not address the high availability requirement unless it replicates with another device,” they said. “This will effectively increase the solution cost. Many SSDs we sampled and evaluated do not sustain performance when mixing different I/O access patterns.”

The storage setup for the demo consisted of four Violin Memory 3205 arrays, with a total raw capacity of 10 TB (7.2 GB usable), and aggregate I/O bandwidth of 5 GB/second. The four arrays can deliver on the order of a million IOPS with 4K blocks, with a typical write latency of 20us and read latency of 90us.

Driving the storage were ten IBM 3650 M2 dual-socket x86 servers, each with 32 GB of memory. The 3650 cluster was connected with InfiniBand, with the Violin boxes hooked to the servers via PCIe.

All 6.5 TB of metadata for the 10 billion files was mapped to the four 3U Violin arrays. No disk drives were required since, for demonstration purposes, the files themselves contained no data. To provide a more or less typical file system environment, the files were spread out across 10 million directories. Scaled up to 100 billion files, the researchers estimated that just half a rack of flash storage arrays would be needed for the metadata, compared to five to ten racks of disks required for the same performance.

It’s noteworthy that the researchers selected Violin gear for this particular demo, especially considering that IBM is currently shipping Fusion-io PCI-based flash drives with its System X servers. Even though the work describe here was just a research project, with no timetable for commercialization, it’s not too big a stretch to imagine future IBM systems with Violin technology folded in. The larger lesson though is that solid-state storage is likely to figure prominently in future storage system, IBM or otherwise, when billions of files is are in the mix.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire