UCLA Selects Modular Home for Shared HPC

By Nicole Hemsoth

July 25, 2011

Purdue University made waves last year with its selection of HP’s POD containerized datacenter, which was hauled in to help them cope with a power inefficiencies stemming from an existing brick and mortar datacenter on campus.

The university set the proof point for cost and efficiency of modular datacenters, with their associate VP of Academic Technologies, John Campbell claiming that for 60% of the cost of a collocation facility the university could install a POD.

The selling point for containerized datacenters in general is that they come fully configured (although customizations can be made) with all the cables, power, cooling and racks in place and ready to roll. For Purdue, the savings mounted in the arenas of colo leasing, cutting back on staff to man datacenters, extension of on-campus networks, reduced power costs—which came, in part, because of the university’s own power plant.

UCLA announced this week that it has climbed aboard the containerized datacenter bandwagon with its head of academic technology services and managing director for the Institute of Digital Research and Education, Bill Labate, extolling the benefits of containerized HPC.

Labate’s group is responsible for providing university research cyberinfrastructure via its shared cluster system, which allows researchers who want to build their own clusters to instead buy compute nodes that Labate’s team integrates into the shared cluster. This allows the team to make the cycles available for over 170 research projects, from particle physics to genomcis and beyond.

As the need for cycles grew steadily, Labate saw a need for new equipment. He said that they had an existing datacenter that was a target for retrofitting, but when the team examined the possibility, it was clear there would be power and cooling limitations even though the space itself would have allowed room for growth. Labate’s team was able to secure $4.4 million to retrofit the existing data center, but when they received their final estimate for $7.2 million for the project, the shortfall led Labate down a different path.

Since it was not possible to scale down the potential retrofitted datacenter to remain within budget constraints, the possibilities of modular datacenters entered the picture. Labate said that to scale down to the level needed to suit the allotted funding would not have served even intermediate needs. Furthermore, since the goal of this undertaking was to enhance growth potential for the shared cluster resources, the retrofit would have been a waste of effort and money.

Labate approached UC San Diego for opinions about their experiences with a Sun-Oracle Black Box containerized solution, but found that they faced challenges with the U-shaped layout.  UCSD told him that one thing they did not like was that the Black Box required specialized equipment and brought logistical challenges when it came to replacing and maintaining hardware since entire sections needed to be pulled out for fixes. This would not suit UCLA’s needs since, again, their system of buying new hardware was based on price-performance options among vendors, thus requiring flexibility to swap components based on what individual vendors offered. Besides, the Black Box solution was only a 20-foot container, and Labate knew that he needed to be able to power more cycles than the smaller Sun-Oracle solution could provide.

Labate’s team eventually settled on HP due to its high density, which was a good fit for what they were trying to accomplish in terms of providing as many cycles as possible. Other vendors they evaluated offered attractive density but Labate said there was not enough flexibility–that they needed to be able to grow with solutions that weren’t specialized for a particular container environment.

Before choosing the high-density, 40×8 feet POD container from HP, the team also looked at options from Dell, Rackable and as noted previously, the Sun-Oracle Black Box, which Labate says was the first to be struck from the list due to the size and shape limitations. He did not go into detail about the reasons behind abandoning the Dell and Rackable solutions, other than to say that for their specific needs, density was the deciding factor. Still, he noted that there were many similarities between the HP, Dell, IBM, and Rackable solutions—the choice simply came down to price, performance, flexibility of equipment solutions, and density.

The site preparations for the container began in October 2010 and moved swiftly until ending in mid-April of 2011. This entailed extending the university’s existing chilled water, power systems and pumps, fiber networks and laying the solid foundation required to support 110,00 pounds of steel and equipment.

Many modular datacenter makers emphasize the quick installation and set-up of their containers, claiming that it can be humming away in a few short weeks. As Labate says, however, anyone who knows anything about datacenters knows that you “can’t just plunk down a datacenter in your backyard and hook into your garden hose.” All told, from site prep to shared cluster bootup the team was looking at several months.

The shared cluster is distributed across campus with one building housing around 300 nodes, another with roughly 500 and now the POD, which packs in over 1500 nodes. His team ran a wide area InfiniBand network throughout, pulling all the nodes onto the same fabric for efficient management. They connected the Ethernet network for storage  traffic, creating what he describes as a “geographic spread out single cluster.”

The team chose to keep the storage resources outside of the POD, in part to protect the valuable applications and results of long runs, but also because the POD has been optimized for compute nodes according to his team’s purpose to deliver shared cluster resources as if it was a single system. He emphasized repeatedly that their needs are specific—they wanted to be able to maximize the number of cycles available for university research.

When asked about usability or performance tradeoffs, Labate was adamant that containers are more efficient and perform for their needs, which again, are focused on providing more compute for the shared HPC cluster. He said that in many ways, the container streamlines their HPC operations by shedding the maintenance and efficiency hassles of brick and mortar. As he noted, “there are no other people in the POD, in fact, we limit our time in there since we want to keep it buttoned up as tight as possible. It’s been freeing, no operators in the pod, no need for anyone to sit in there and monitor—it’s all automated with all the tools we need for monitoring, powering on and off and so forth.”

According to Labate, there were no power and energy consumption problems with their use of POD. He said that compared to one of their brick and mortar datacenters which was operating at 1.5 PUE, the POD was running a steady 1.17 PUE. He claims that this translates into roughly a $200,000 difference in power costs, which represented a secondary but very important consideration as they looked at the POD capabilities.

Despite the lack of wide user adoption of modular datacenters, it was nearly impossible to get Labate to remark on any drawbacks to such solutions. He said that outside of the obvious negative factors, which include working inside small boxes with 36 raging blowers and tight quarters (which his team overcomes by saving fixes inside for once-weekly missions) and the aesthetic problem of having an giant, ugly shipping container fitting in with an artful sense of campus uniformity (an issue he said gave the campus aesthetics folk a few gripes) he can’t imagine traditional datacenters to address growth ever again.

When pressed about what he might warn others about when considering such solutions, Labate said environmental conditions were critical. First, in terms of making sure it is possible to locate the container close to needed power and cooling resources. Also, in terms of actually environment—he said that during a recent conversation with someone in an snow-bound region, he suggested that to avoid preventing access to the container they might need to consider building enclosures or renting indoor space.

Snow might not be a problem for UCLA, but earthquakes certainly are. Labate said this is another important distinction between brick and mortar and containers—while he notes he hasn’t researched his hunch, these massive, solid steel, windowless shipping containers were far likely more structurally sound than any existing traditional datacenter on his campus. Let’s hope he never gets a chance to prove that theory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire