QLogic Makes Case for Leaner, HPC-Centric InfiniBand

By Michael Feldman

July 26, 2011

It was a bit of a surprise when QLogic beat out Mellanox as the interconnect vendor on the National Nuclear Security Administration’s (NNSA’s) Tri-Lab Linux Capacity Cluster 2 contract in June. Not only was Mellanox the incumbent on the original Tri-Lab contract, but it is widely considered to have the more complete solution set for InfiniBand. Nevertheless, QLogic managed to win the day, and did so with somewhat unconventional technologies.

One of these is QLogic’s TrueScale InfiniBand architecture. TrueScale uses an on-load approach to networking in which the lion’s share of packet processing is passed off to the CPUs on the servers. That allows host channel adapters (HCAs) based on TrueScale chips to be much simpler in design than those used to offload those functions (in particular Mellanox ConnectX-based adapters), but at the cost of using CPU resources to do network tasks like packet processing.

That’s why offloading has been the traditional answer for computationally-burdened HPC systems, not just for lower-level packet manipulation, but for MPI processing as well. And it makes perfect sense. The less communication processing the CPUs have to do, the more time they can spend on the application.

But it doesn’t always work out that way in the real world. Especially for certain types of codes where the bottleneck is communication, rather than computation, being able to tap into host CPUs can be an advantage. This is especially true in modern-day clusters, which are filled with core-rich CPUs, not all of which can be fully utilized 100 percent of the time. In these situations, on-loading can exploit essentially free cycles and in a manner that scales naturally with the size of the cluster.

But even where the application is more computationally intensive, QLogic maintains that its on-load approach will still outrun Mellanox’s offloading approach. They attribute that to the other critical piece of their InfiniBand technology: Performance Scaled Messaging (PSM). PSM is QLogic’s communication library that it touts as their lightweight answer to InfiniBand Verbs. The latter was defined by the original InfiniBand spec designers to provide a general-purpose communication API that assumed RDMA and some sort of offloading in the network adapter.

QLogic came up with PSM as a leaner, meaner interface designed explicitly for high performance computing. And now that PSM has been turned over as open source and incorporated into the OpenFabrics Enterprise Distribution (OFED), the software can now be embraced by the wider HPC community. Like Verbs, PSM is supported in all major MPI implementations.

According to Joseph Yaworski, director of HPC Product and Solution Marketing at QLogic, PSM is what makes their InfiniBand offering so efficient for HPC environments. Both PSM and Verbs run on the server CPUs, but unlike Verbs, which was originally designed for handling of I/O requests in a datacenter environment (and later modified to support message passing when HPC became the primary user of InfiniBand), PSM was purpose-built for MPI from the start.

The difference is the nature of the communication for the two application areas. While I/O usually entails relatively large blocks of data to be sent across a limited number of nodes, MPI communication often requires tens of millions of relatively small messages to be passed between hundreds or even thousands of CPU cores.

“Verbs, due to its poor semantic match between MPI’s message passing requirements and the structure of the Verbs implementation, means that a heavy weight protocol must be traversed to handle each message,” says Yaworski. “This approach puts a significant burden on the host CPU and severely limits network performance, especially as a cluster is scaled.

QLogic points to a couple of ANSYS FLUENT benchmarks to show its InfiniBand performance on these common CFD codes. The tests were run on a 384-core server cluster, made up of 32 computational nodes and one NFS server node. Each server consisted of dual quad-core Intel Xeon 5670 “Westmere” 2.93GHz processors and 24GB of memory. Platform MPI was used with the MPI stats option turned on to collect the statistics for communications and CPU utilization. According to Yaworski, the same object code was used for the application for both on-loading and offloading runs.

The first test was the Eddy 417K cell model, which is relatively light on the computation side, but heavy on the communications. For this application, QLogic says on-loading with PSM delivers 366 percent more application performance than offloading with Verbs, claiming the difference is the more efficient use of the CPUs. With this model, just 76 percent of the CPU cycles were used for communication with on-loading/PSM versus 95 percent for offloading/Verbs.

The second FLUENT test case is the Truck 111M cell model, which is much more computationally intensive. In this case, the QLogic solution runs just 20 percent faster, since the overall communication burden is much less, although still taking up 53 percent of the CPU for on-loading with PSM and 61 percent for offloading with Verbs.

As one might suspect, Mellanox is having none of this. According to Gilad Shainer, senior director of HPC and Technical Computing at Mellanox, the offloading critique is unfounded, and benchmark tests such as the ones QLogic touts can be easily manipulated for the benefit particular outcomes. From his perspective, QLogic’s positioning of their InfiniBand on-load technology is a marketing ploy to make up for the lack of sophistication in the TrueScale silicon.

Shainer maintains that the rationale for offloading is straightforward: to be able to use system resources for what they do best, in this case, CPUs for computation and HCAs for network processing. According to him, that’s why most adapters use some form of offloading today, whether to support InfiniBand and MPI communication, Fibre Channel over Ethernet, TCP offload, or what have you.

On-loading also makes RDMA (Remote Direct Memory Access) impossible, which means data must be buffered by the CPU in certain situations, instead of being directly mapped by the HCA. In those cases, data transfer latencies are much higher — up to 7 times higher according to Mellanox — and throughput is lower.

This is especially true when InfiniBand is used to connect storage. Shainer says for file system applications like Lustre and GPFS, you can lose up to half the I/O bandwidth without RDMA (Yaworski concedes that Mellanox is currently better for InfiniBand-based storage but says QLogic is within “spitting distance” of its competitor on I/O performance.) Shainer also says RDMA gives Mellanox’s GPUDirect implementation a decided performance advantage, a claim disputed by QLogic.

On the other hand, says Shainer, just because the offload capability is on-chip, there is no requirement to use it. Mellanox supports network transport and MPI offload capabilities, but the user is able to switch those features on and off if so desired. In that sense, he points out, offloading is really a superset of on-loading.

Nevertheless, recent experience on some large clusters at Lawrence Livermore National Lab (LLNL) appear to back QLogic’s claims of scalability and performance, at least on some of the lab’s simulation codes. On Sierra, a 1,944-node HPC cluster at LLNL connected with QLogic InfiniBand adapters and switches, a multiphysics code was able to achieve 1 to 2 us of MPI latency across 24,000 cores and attain 27 to 30 million messages per second. Matt Leininger, deputy for advanced technology projects at LLNL, said that Sierra demonstrated better scaling than any of their other clusters, not to mention their older Blue Gene and Cray XT supercomputers. Leininger attributed the superior performance to the QLogic network.

At LLNL, QLogic InfiniBand now connects more than 4,000 nodes spread across Sierra and three smaller HPC clusters. The lab’s positive experience with the technology was almost certainly a factor that led the NNSA to select QLogic QDR InfiniBand over the Mellanox offering on the second Tri-Labs contract announced. With the win, QLogic gear will now be firmly entrenched at Sandia National Laboratories and Los Alamos National Laboratory, the other two labs in the Tri-Labs complex.

While Mellanox will continue to be a market leader in InfiniBand for the foreseeable future, QLogic may have found a technological strategy that enables it to expand its market share. Continuing to exploit that strategy is going to be tough going, given its competitor’s dominance in the InfiniBand market. But in Mellanox’s more all-encompassing RDMA offerings and QLogic’s more bare-bones HPC approach, the market may have found the differentiation needed to keep both InfiniBand product sets viable.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire