Above the Clouds: An Interview with Armando Fox

By Nicole Hemsoth

August 2, 2011

If you spend any time reading about scientific computing in the clouds, it is quite likely you have encountered the name Armando Fox at least once. Fox has been writing about cloud computing before the term ever emerged into mainstream computing speak and continues to be a prolific source of information about cutting-edge cloud computing research for scientific and technical computing.

Fox is an Adjunct Associate Professor at UC Berkeley and a co-founder of the Reliable, Adaptive and Distributed Systems Laboratory (RAD Lab) at Berkeley. He has held other teaching positions at Stanford, Illinois and MIT and is co-author of a paper that drew significant attention, “Above the Clouds: A Berkeley View of Cloud Computing,” which spelled out some early challenges and benefits of high performance computing clouds.

In addition to having his head in the clouds, Fox helped design the Intel Pentium Pro microprocessor and founded a company to commercialize his UC Berkeley dissertation research on mobile computing.

We recently spoke with Armando Fox about some of his observations on the future of high performance computing in the cloud and what directions he predicts industry and research will go in coming years.

HPCc: Give us a sense of your “history” with cloud and distributed computing — where does grid computing fit into this range of experiences, both scholarly and practical?

Fox: From 1994–1999, before the cloud was a thing, I worked on some of the earliest research projects in using clusters of commodity computers, the basis of today’s cloud architecture, as a graduate student at Berkeley. I’m now on the faculty at Berkeley and was a co-founder of the Reliable Adaptive Distributed Systems lab (RAD Lab), which was one of the earliest and most aggressive adopters of cloud computing for research and teaching.

We routinely do research experiments using hundreds of machines in the cloud, have spent hundreds of thousands of dollars for cloud capacity to support our research (though still much less than it would’ve cost to try to build and operate this capacity ourselves, which would not even have been possible for some of our very large experiments), and have used cloud computing in our courses from lower-level undergraduate though PhD to improve the students’ educational experience.

HPCc: You have published a number of papers on cloud computing for scientific applications, one of which was “Cloud Computing: What’s in it for Me as a Scientist” — although this was written some time ago, what IS in it for scientific users, many of whom have very specific needs, require low-latency networks, don’t want to contend with data movement hassles/expenses, etc.

Fox: It is true that there are some very large (“supercomputer sized”) scientific apps that really need much lower latency than what shared-nothing cloud provides; it’s also true that if you’re generating a lot of data each day, the costs to move it into and out of a third-party cloud can add up. However, we believe that there’s a huge and largely untapped “new middle class” of scientific computing users who would immediately benefit from running medium-to-large jobs (tens or a couple of hundred machines) on public clouds.

There are two reasons. One is zero waiting: rather than sitting in a queue waiting your turn on the big iron, you provision your ‘virtual supercomputer’ in minutes and start your experiment, or even multiple experiments simultaneously with different parameters. Second is true cost associativity (1000 machines x 1 hour is same price as 1 machine x 1000 hours), an unprecedented new ability made available by the public cloud. Together, these abilities can actually accelerate your research. And while some jobs do require something like MPI, which doesn’t run overwhelmingly well on the public cloud, frameworks like Hadoop, Hive, Pig, Dryad, and others allow plenty of useful problems to be solved, and even commercial packages like Matlab and Mathematica are starting to provide “cloud back-end” computation.

HPCc: Do you think “HPC-optimized” public cloud services are enough to resolve current barriers for HPC cloud computing to become more widespread?

Fox: As above — the current cloud architecture won’t be the answer for all scientific computing users. But yes, a lot can be done to tailor the specific cloud offerings to HPC (as Amazon and others have begun to do). And the exciting part here is that because of the scale and volume of commodity clouds, scientific computing users have a chance to do something they’ve never really had before — to influence the design of commodity equipment!

HPCc: Outside of the challenges I referred to in both questions, what are some of the programming problems that are persistent and what is happening now that might help overcome them?

Fox: Frameworks like Hadoop are great if your problem can be cast as one or more map/reduce problems, but writing that code is still cumbersome compared to using very-high-level languages like Python. Expect to see lots of tools that make current cloud frameworks more accessible to such languages. As well, today there are many different cloud computation frameworks that were developed in isolation, so they don’t always play nice together in terms of intelligently sharing/scheduling cloud resources. This is an area of active research — the Mesos project at UC Berkeley is one example of a “meta-framework” that does this task and is already being test-deployed internally at companies like Twitter and Facebook.

HPCc: There is a lot of talk about the coming age of “big data” — where does cloud computing play a role in this trend toward ever-larger datasets? There are some cost/data movement issues, so where is the benefit?

Fox: With big data you’re talking terabytes a day, minimum. The benefit is that to do meaningful computation on big data and get an answer in a timely manner, you need the parallelism of the cloud. Programming the cloud won’t just be a “benefit” for big data analytics, it will be the only way such analytics gets done. And while data movement remains a challenge, it will receive increasing attention partly because once your data does get into the cloud, (a) it’s backed up and (b) other scientists can potentially access it easily for their own work, i.e., the cloud facilitates data sharing.

HPCc: What strikes you as one of the best use cases for very large-scale computing on a public cloud resource?

Fox: The big win for public cloud is elasticity. If your work (whether running experiments, operating a website, or crunching data) uses an amount of resources that’s hard to predict in advance and/or may change significantly over short timescales, using the public cloud effectively offloads the risk of mispredicting what resources you need. Also, because you can pay as you go, the public cloud allows you to harness minimal resources at first and then smoothly increase your consumption as you earn revenue (or raise grant money, as the case may be).

More information about Armando Fox and his research can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire