Above the Clouds: An Interview with Armando Fox

By Nicole Hemsoth

August 2, 2011

If you spend any time reading about scientific computing in the clouds, it is quite likely you have encountered the name Armando Fox at least once. Fox has been writing about cloud computing before the term ever emerged into mainstream computing speak and continues to be a prolific source of information about cutting-edge cloud computing research for scientific and technical computing.

Fox is an Adjunct Associate Professor at UC Berkeley and a co-founder of the Reliable, Adaptive and Distributed Systems Laboratory (RAD Lab) at Berkeley. He has held other teaching positions at Stanford, Illinois and MIT and is co-author of a paper that drew significant attention, “Above the Clouds: A Berkeley View of Cloud Computing,” which spelled out some early challenges and benefits of high performance computing clouds.

In addition to having his head in the clouds, Fox helped design the Intel Pentium Pro microprocessor and founded a company to commercialize his UC Berkeley dissertation research on mobile computing.

We recently spoke with Armando Fox about some of his observations on the future of high performance computing in the cloud and what directions he predicts industry and research will go in coming years.

HPCc: Give us a sense of your “history” with cloud and distributed computing — where does grid computing fit into this range of experiences, both scholarly and practical?

Fox: From 1994–1999, before the cloud was a thing, I worked on some of the earliest research projects in using clusters of commodity computers, the basis of today’s cloud architecture, as a graduate student at Berkeley. I’m now on the faculty at Berkeley and was a co-founder of the Reliable Adaptive Distributed Systems lab (RAD Lab), which was one of the earliest and most aggressive adopters of cloud computing for research and teaching.

We routinely do research experiments using hundreds of machines in the cloud, have spent hundreds of thousands of dollars for cloud capacity to support our research (though still much less than it would’ve cost to try to build and operate this capacity ourselves, which would not even have been possible for some of our very large experiments), and have used cloud computing in our courses from lower-level undergraduate though PhD to improve the students’ educational experience.

HPCc: You have published a number of papers on cloud computing for scientific applications, one of which was “Cloud Computing: What’s in it for Me as a Scientist” — although this was written some time ago, what IS in it for scientific users, many of whom have very specific needs, require low-latency networks, don’t want to contend with data movement hassles/expenses, etc.

Fox: It is true that there are some very large (“supercomputer sized”) scientific apps that really need much lower latency than what shared-nothing cloud provides; it’s also true that if you’re generating a lot of data each day, the costs to move it into and out of a third-party cloud can add up. However, we believe that there’s a huge and largely untapped “new middle class” of scientific computing users who would immediately benefit from running medium-to-large jobs (tens or a couple of hundred machines) on public clouds.

There are two reasons. One is zero waiting: rather than sitting in a queue waiting your turn on the big iron, you provision your ‘virtual supercomputer’ in minutes and start your experiment, or even multiple experiments simultaneously with different parameters. Second is true cost associativity (1000 machines x 1 hour is same price as 1 machine x 1000 hours), an unprecedented new ability made available by the public cloud. Together, these abilities can actually accelerate your research. And while some jobs do require something like MPI, which doesn’t run overwhelmingly well on the public cloud, frameworks like Hadoop, Hive, Pig, Dryad, and others allow plenty of useful problems to be solved, and even commercial packages like Matlab and Mathematica are starting to provide “cloud back-end” computation.

HPCc: Do you think “HPC-optimized” public cloud services are enough to resolve current barriers for HPC cloud computing to become more widespread?

Fox: As above — the current cloud architecture won’t be the answer for all scientific computing users. But yes, a lot can be done to tailor the specific cloud offerings to HPC (as Amazon and others have begun to do). And the exciting part here is that because of the scale and volume of commodity clouds, scientific computing users have a chance to do something they’ve never really had before — to influence the design of commodity equipment!

HPCc: Outside of the challenges I referred to in both questions, what are some of the programming problems that are persistent and what is happening now that might help overcome them?

Fox: Frameworks like Hadoop are great if your problem can be cast as one or more map/reduce problems, but writing that code is still cumbersome compared to using very-high-level languages like Python. Expect to see lots of tools that make current cloud frameworks more accessible to such languages. As well, today there are many different cloud computation frameworks that were developed in isolation, so they don’t always play nice together in terms of intelligently sharing/scheduling cloud resources. This is an area of active research — the Mesos project at UC Berkeley is one example of a “meta-framework” that does this task and is already being test-deployed internally at companies like Twitter and Facebook.

HPCc: There is a lot of talk about the coming age of “big data” — where does cloud computing play a role in this trend toward ever-larger datasets? There are some cost/data movement issues, so where is the benefit?

Fox: With big data you’re talking terabytes a day, minimum. The benefit is that to do meaningful computation on big data and get an answer in a timely manner, you need the parallelism of the cloud. Programming the cloud won’t just be a “benefit” for big data analytics, it will be the only way such analytics gets done. And while data movement remains a challenge, it will receive increasing attention partly because once your data does get into the cloud, (a) it’s backed up and (b) other scientists can potentially access it easily for their own work, i.e., the cloud facilitates data sharing.

HPCc: What strikes you as one of the best use cases for very large-scale computing on a public cloud resource?

Fox: The big win for public cloud is elasticity. If your work (whether running experiments, operating a website, or crunching data) uses an amount of resources that’s hard to predict in advance and/or may change significantly over short timescales, using the public cloud effectively offloads the risk of mispredicting what resources you need. Also, because you can pay as you go, the public cloud allows you to harness minimal resources at first and then smoothly increase your consumption as you earn revenue (or raise grant money, as the case may be).

More information about Armando Fox and his research can be found here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire