Q&A: Jack Wells, Director of Science for the National Center for Computational Sciences

By Dawn Levy

September 26, 2011

New leader shares challenges and opportunities as the scientific community gears up for hybrid supercomputing

On July 1 Jack Wells became the director of science for the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL). The NCCS is a Department of Energy (DOE) Office of Science user facility for capability computing, which employs maximal computing power to solve in the shortest time possible problems of a size or complexity that no other computer can approach. Its Oak Ridge Leadership Computing Facility (OLCF) houses Jaguar, America’s fastest supercomputer, used by researchers to solve pressing science and energy challenges via modeling and simulation. Leveraging expertise and infrastructure, the NCCS also hosts the Gaea supercomputer, which ORNL operates on behalf of the National Oceanic and Atmospheric Administration, and the Kraken supercomputer, which is managed by the National Institute for Computational Sciences, a collaboration between the University of Tennessee and ORNL.

In this interview, Wells describes his vision for executing a scientific strategy for the NCCS that ensures cost-effective, state-of-the-art computing to facilitate DOE’s scientific missions. To begin this decade’s transition to exaflop computing, capable of carrying out a million trillion floating point operations per second, plans are in the works for a staged upgrade of Jaguar, a high performance computing system employing traditional CPU microprocessors, to transform it into Titan, a hybrid system employing both CPUs and GPUs,energy-efficient number crunchers that accelerate specific types of calculations in scientific application codes. As the OLCF gears up to deliver the system, expected to have a peak performance of 10–20 petaflops, by early 2013, Wells’s challenges are many.

HPCwire: What was your role in ORNL’s Computing and Computational Sciences Directorate before it housed and ran a national user facility?

Wells: I came here as a [Vanderbilt] graduate student working on Office of Science-funded projects in nuclear and atomic physics. My Ph.D. was sponsored by a grand challenge project funded under a program that started with the High Performance Computing and Communications Act of 1992—that’s called the Gore Act because Senator Gore was the main sponsor in the U.S. Senate, and it’s through that, as the old story goes, he ‘invented’ the Internet. It was that program [which partnered HPC science teams from around the country with ORNL computer scientists and hardware vendor Intel] that founded the Center for Computational Sciences (CCS) originally in 1992.

After a postdoc I came back to ORNL in ’97 as a Wigner Fellow in the CCS, and Buddy Bland [project director of the OLCF-2, which built the petascale Jaguar system, and the OLCF-3, which will build the even more powerful Titan] was my first group leader. I worked in the Scientific Computing group on parallel code performance optimization and doing my science in theoretical atomic and molecular physics. I did use the CCS computers that we had in my Ph.D. thesis—the Intel iPSC/860 and Intel XP/S 5 Paragon. Then when I came back in ’97 we had the XP/S 35 Paragon and XP/S 150 then too. We transitioned to the IBM Eagle by about 1999.

The point is that we had a CCS even before we had a Leadership Computing Facility. Beginning in 1999, I worked on basic materials and engineering physics programs in DOE’s Office of Science Basic Energy Sciences. And then when the [Center for Nanophase Materials Sciences, or CNMS] was constructed at Oak Ridge, I along with my group was matrixed to form the Nanomaterials Theory Institute at the CNMS. During that time, Oak Ridge competed for and won the DOE Leadership Computing Facility in 2004. The significant thing is that CCS has been here for almost 20 years. Next year we have a 20-year anniversary.

HPCwire: What was it like to serve as an advisor to Tennessee Senator Lamar Alexander?

Wells: Since Senator Alexander has been a senator, starting in 2003, he has requested that the Office of Science provide him a Science Fellow from Oak Ridge National Laboratory, and the Office of Science has worked with the lab to provide, now, five people. This has been a relationship where Senator Alexander has benefitted from the expertise of the Office of Science and ORNL.

As Senator Alexander is fully aware, the largest federal investment in the state of Tennessee is the one that DOE makes in its facilities in and around Oak Ridge, with ORNL being one of those. And many of the Senator’s priorities align very well with our mission. Those include clean air, abundant clean energy, increased brain power as a driver for economic competitiveness, energy security. He has been an advocate for Office of Science programs within the U.S. Senate, including leadership computing. In particular, he and New Mexico Senator Jeff Bingaman were the lead authors in the senate on the DOE High-End Computing Act of 2004 that authorized funding for the leadership computing facilities.

I was not there in 2004. I went there from 2006 to 2008, and my title there was one of a legislative fellow. A fellow is someone who is working in the Senate but is not an employee of the Senate. Many scientists and engineers do this, for example through fellowships sponsored by the American Association for the Advancement of Science. While I was there I did not do politics. I did not make policy. But I informed the Senator on topics related to high performance computing, energy technology, renewable energy, nuclear energy, and science, technology, engineering, and mathematics education and its relationship to U.S. competitiveness.

HPCwire: Did directing institutional planning for ORNL provide lessons that might guide you in your new role?

Wells: What I learned from working for our laboratory director’s office from August of 2009 through June of 2011—that’s the job I was just doing before I came to the NCCS—is that both planning and science are about the future, and we need to not be constrained in our thinking by the status quo, but to try to establish a clear and compelling vision for the future for our science programs, for our institution, and ultimately, in collaboration with others, for our nation; to not always think about what is, but what could be, and why it would be an attractive future.

ARPA-E [a DOE program to spur energy innovations] is an interesting case of a good idea articulated by policymakers that was fairly rapidly put in place. It was authorized by Congress and then implemented by DOE, initially through Recovery Act funding, to bring a new approach to funding high-risk, high reward energy technology research within the Department of Energy. It’s been reviewed very well by industry and its sponsors in Congress. The ability to take risks and reach for the big payoffs is something that we should think about and try to implement when we can.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire