Cray Unveils Its First GPU Supercomputer

By Michael Feldman

May 24, 2011

Cray has released the details of its GPU-equipped supercomputer: the XK6. The machine is a derivative of the XE6, an AMD Opteron-based machine that the company announced a year ago. Although Cray is calling this week’s announcement the XK6 launch, systems will not be available until the second half of the year.

Cray’s pitch for the XK6 is that it enables applications to be productive with GPUs at scale. According to Barry Bolding, vice president of Cray’s products division, they are unique in the GPU computing space because of their long-term commitment to heterogeneous computing and their track record for building productive petascale systems. In addition, he points out that Cray has a legacy of experience with vector-based supercomputing and their associated compilers, most recently with their X2 super, aka “Black Widow.”

Hardware-wise, though, the XK6 is not that different from its CPU-based brethren. The blade is basically a variant of the XE6, replacing four of the eight AMD Opteron sockets with NVIDIA Tesla GPU modules. Each four-node blade consists of two Gemini interconnect chips, four Opteron CPUs, and four NVIDIA Tesla 20-series GPUs. The Tesla in this case is the X2090, a compact form factor of the M2090 module that was introduced last week. Like the M2090, the X2090 sports a 665 gigaflop (double precision) GPU, 6 GB of GDDR5, and 178 GB/second of memory bandwidth. A XK6 cabinet can house up to 24 blades (96 nodes), which will deliver something in the neighborhood of 70 teraflops.

Each XK6 node in the blade pairs a single X2090 GPU with an AMD Interlagos CPU (Opteron 6200), along with 16 or 32 GB of 1600 MHz DDR3 memory. That’s a rather CPU-rich configuration for a GPU-based server, given that many commodity clusters use two, four, or even eight graphics devices per x86 processor. And in many cases those processors are not top-of-the-line Xeons or Opterons.

According to Bolding, their thinking here is that not all supercomputing workloads are able to take maximum advantage of the GPU’s capability, so they’ve opted for a fairly conservative processor mix. “We really envision some applications spending a considerable amount of time running on just the x86 portion of the system,” he told HPCwire. “So we really want to have a balance between scalar and accelerator.”

On the other hand, some customers are likely to have applications that are already highly tuned for GPUs, and in this case would want a system with a higher GPU:CPU ratio. Bolding says, for those users they are willing to build custom machines with a richer GPU configuration, but it would not be the standard XK6 and would entail more than just a tweak to those blades.

Besides the hardware, the XK6 will inherit software stack and programming environment from the XE6, including the Cray Linux Environment (CLE). Added on top will be GPU-specific libraries and tools like NVIDIA’s CUDA SDK for programming the Tesla components. GPU support will also be provided by some of the third-party software that Cray currently resells, like the PGI compilers. The PGI compiler suite has already been extended to generate code for GPUs, and is being integrated and tested with the XK6 . The CAPS enterprise HMPP product for GPUs is also available, but unlike PGI is not currently part of XK6 test suite, and is not being resold by Cray.

Cray also will be developing additional GPU compilers, runtime libraries, and tools, as well as bringing in third-party software, such as EM Photonics’ CULA library, to make the environment richer and more productive. The idea here is to bring GPU acceleration in line with its Adaptive Supercomputing approach. The ultimate goal is to be able to write source code that could automatically be transformed to run on either CPUs, GPUs or some mix of the two. The goal is not just to deliver performance, says Bolding, but to “get your codes to better performance faster.”

To propel that vision, Cray is developing its own OpenMP-based compiler that will be targeted for GPU acceleration. This is a higher-level programming model than CUDA, using special directives within the application source to generate GPU code, much like what is available from PGI today. Unlike that offering however, the OpenMP version from Cray is based on standardized OpenMP directives designed to address hardware accelerators. A pre-production version will be available to selected customers, says Bolding, and will support both Fortran and C.

The directives-based programming tools for GPUs is a key part of Cray’s strategy to turn the XK6 into a productive GPU machine, and an attempt to differentiate it from the current crop of GPU-equipped clusters. Bolding says they expect to get the majority of performance available from lower level programming environments like CUDA, but in a much more productive and portable environment. And even though Cray is developing an OpenMP compiler, their overarching goal is to provide a standard, high-level programming environment that is portable across accelerators. “We really believe that a good programming model has to be hardware independent,” said Bolding.

The whole idea of GPUs in supercomputers, of course, is to accelerate codes amenable to data parallelism. One application set Cray envisions for these supers is weather and climate modeling, an area the company has been particularly successful in. For weather prediction, code acceleration can be especially critical, given the requirement is to deliver accurate results in real time. And for this application, model accuracy is directly related to floating point horsepower.

For example, it is estimated that for a weather forecasting model with a horizontal grid granularity of 40 km, one would need 0.4 petaflops. But to refine that granularity to 10 km, one would need a 20 petaflop system. The floating point requirements are similar for providing greater levels of granularity in climate simulations, but without the need to deliver results in real-time. Although these codes scale well enough on CPUs, the prospect of buying a system with 50 times as many processors to deliver more accurate results is daunting from both an upfront cost basis and the ongoing expense of powering such a system.

Today, the most feasible way to accomplish this level of performance boost is with accelerators. Not that GPUs are particularly cheap. An X2090 is likely to be four to five times as expensive as a top-of-the-line Opteron. But since a 20-series Tesla delivers about 10 times the raw floating point performance at only about twice the power consumption, a GPU solution makes sense as long as the codes can extract those extra FLOPS.

Once you’ve made the initial outlay, though, the XK6 is relatively easy to upgrade. According to Bolding, the next-generation GPUs, such as the future Kepler parts, will be able to be inserted into existing machines with just a module swap on the blade. Once those next-gen GPUs are available, Cray estimates these supercomputers will be able to scale up to 50 peak petaflops.

Also, one doesn’t have to build a pure XK6 machine. The GPU blades can be mixed into existing XE6 configurations, which themselves can be constructed from the older XT6 systems via the insertion of the Gemini interconnect.

Cray’s first XK6 order represents such an upgrade. The Swiss National Supercomputing Centre (CSCS) will use their existing XE6m system as the foundation for a multi-cabinet Cray XK6. The system is to be used to support scientific research in weather forecasting, climatology, chemistry, physics, material sciences, geology, biology, genetics, experimental medicine, astronomy, mathematics and computer sciences.

For the Swiss or anyone else to experience all this GPU goodness, they will have to wait for at least a few months. While the availability of the X2090 coincides with that of the M2090 announced last week, AMD’s Opteron 6200 isn’t expected to hit the streets until Q3. Whether Cray has other dependencies associated with availability, Bolding wouldn’t say.

Cray, of course, could have constructed a GPU machine last year based on the Magny-Cours CPU (Opteron 6100) and X2070 GPU.  HP, IBM, SGI, and practically every other HPC cluster vendor came up with a GPU offering in 2010. But according to Bolding, the XK6 is a more thought-out approach and will be the more productive machine.

“We could have come out with something earlier that wasn’t a complete Cray product, in other words, just a bunch of hardware and a mish-mash of open source software, but we chose not to,” he said. ”Our best mapping of a complete HPC product to the market aligned with the current Cray XK6 timeframe.”

“We’re not first to the party here, but we’re hoping we’re the best dancer,” he added.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire