Since 1986 - Covering the Fastest Computers in the World and the People Who Run Them

Language Flags
October 19, 2011

HPC Players Embrace Hadoop

Michael Feldman

Vendors in the HPC universe are jumping on the Hadoop bandwagon. This week SGI announced that it was marrying Cloudera’s CDH (Cloudera’s Distribution including Apache Hadoop) software with its own cluster machines. This is not too surprising, considering Hadoop’s role as the leading open source framework for data-intensive analytics on distributed platforms, and Cloudera’s position as a top Hadoop distributor and supporter.

According to the press release, the SGI-Cloudera partnership will “enable the two companies to jointly build, sell and deploy integrated, high performance Apache Hadoop-based commercial solutions.” But as pointed out by Derrick Harris over at GigaOM, this is not necessarily an HPC play in the conventional sense. Even though Hadoop can be used for technical workloads like genomics and seismology, it’s more typical application is for search engines, social media analytics, and advertising optimization.

According to Harris, the Cloudera integration with SGI gear appears to be targeted more toward the latter. On SGI’s website, the pre-configured Hadoop clusters come in two cluster flavors: Rackable Servers and CloudRack Servers. Both are from the non-HPC side of the house. That doesn’t mean such systems won’t be running technical computing workloads, however, given the somewhat different nature of these data-intensive applications (i.e., you don’t necessarily need top bin CPUs, or even InfiniBand, for I/O-bound Hadoop apps).

Harris also points out that Microsoft recently announced its Hadoop integration with Windows Server and Azure. This is an even more nuanced move, considering that Microsoft already has a Hadoop alternative for HPC called LINQ to HPC (formally Dryad). The latter is also packaged with HPC Server 2008 R2, and eventually will be supported in Azure as well.

The implication is that Microsoft will position its LINQ technology for HPC-type applications, and its standard Hadoop integration for non-HPC use cases. There are other Hadoop alternatives designed specifically for performance-obsessed users. In this category are platforms like LexisNexis’ Data Analytics Supercomputer (DAS) offering, as well as non-standard flavors of Hadoop that are being tweaked for performance.

Unfortunately this is the ultimate endorsement of a successful technology — copycats and derivatives. If successful though, at least some of these performance-minded frameworks for data-intensive analytics could find a happy home in HPC.

Full story at GigaOM

SC14 Virtual Booth Tours

AMD SC14 video AMD Virtual Booth Tour @ SC14
Click to Play Video
Cray SC14 video Cray Virtual Booth Tour @ SC14
Click to Play Video
Datasite SC14 video DataSite and RedLine @ SC14
Click to Play Video
HP SC14 video HP Virtual Booth Tour @ SC14
Click to Play Video
IBM DCS3860 and Elastic Storage @ SC14 video IBM DCS3860 and Elastic Storage @ SC14
Click to Play Video
IBM Flash Storage
@ SC14 video IBM Flash Storage @ SC14  
Click to Play Video
IBM Platform @ SC14 video IBM Platform @ SC14
Click to Play Video
IBM Power Big Data SC14 video IBM Power Big Data @ SC14
Click to Play Video
Intel SC14 video Intel Virtual Booth Tour @ SC14
Click to Play Video
Lenovo SC14 video Lenovo Virtual Booth Tour @ SC14
Click to Play Video
Mellanox SC14 video Mellanox Virtual Booth Tour @ SC14
Click to Play Video
Panasas SC14 video Panasas Virtual Booth Tour @ SC14
Click to Play Video
Quanta SC14 video Quanta Virtual Booth Tour @ SC14
Click to Play Video
Seagate SC14 video Seagate Virtual Booth Tour @ SC14
Click to Play Video
Supermicro SC14 video Supermicro Virtual Booth Tour @ SC14
Click to Play Video