Revisiting Supercomputer Architectures

By Chris Willard

December 8, 2011

The chronology of high performance computing can be divided into “ages” based on the predominant systems architectures for the period. Starting in the late 1970s vector processors dominated HPC. By the end of the next decade massively parallel processors were able to make a play for market leader. For the last half of the 1990s, RISC based SMPs were the leading technology. And finally, clustered x86 based servers captured market priority in the early part of this century. 

This architectural path was dictated by the technical and economic effect of Moore’s Law. Specifically, the doubling of processor clock speed every 18 to 24 months meant that without doing anything, applications also roughly doubled in speed at the same rate. One effect of this “free ride” was to drive companies attempting to create new HPC architectures from the market. Development cycles for new technology simply could not outpace Moore’s Law-driven gains in commodity technology, and product development costs for specialized systems could not compete against products sold to volume markets.

The more general-purpose systems were admittedly not the best architectures for HPC users’ problems. However commodity component based computers were inexpensive, could be racked and stacked, and were continually getting faster. In addition, users could attempt to parallelize their applications across multiple compute nodes to get additional speed ups. In a recent Intersect360 study, users reported a wide range of scalable applications, with some using over 10,000 cores, but with the median number of cores used by a typical HPC application of only 36 cores.

In the mid 2000s, Moore’s Law went through a major course correction. While the number of transistors on a chip continued to double on schedule, the ability to increase clock speed hit a practical barrier — “the power wall.” The exponential increase in power required to increase processor cycle times hit practical cost and design limits. The power wall led to clock speeds stabilizing at roughly 3GHz and multiple processor cores being placed on a single chip with core counts now ranging from 2 to 16. This ended the free ride for HPC users based on ever faster single-core processors and is forcing them to rewrite applications for parallelism.

In addition to the power wall, the scale out strategy of adding capacity by simply racking and stacking more compute server nodes caused some users to hit other walls, specifically the computer room wall (or “wall wall”) where facilities issues became a major problem. These include physical space, structural support for high density configurations, cooling, and getting enough electricity into the building.

The market is currently looking to a combination of four strategies to increase the performance of HPC systems and applications: parallel applications development; adding accelerators to standard commodity compute nodes; developing new purpose-built systems; and waiting for a technology breakthrough.

Parallelism is like the “little girl with the curl,” when parallelism is good it is very, very good, and when it is bad it is horrid. Very good parallel applications (aka embarrassingly parallel) fall into such categories as: signal processing, Monte Carlo analysis, image rendering, and the TOP500 benchmark. The success of these areas can obscure the difficulty in developing parallel applications in other areas. Embarrassingly parallel applications have a few characteristics in common:

  • The problem can be broken up into a large number of sub-problems.
  • These sub-problem are independent of one another, that is they can be solved in any order and without requiring any data transfer to or from other sub-problems,
  • The sub-problems are small enough to be effectively solved on whatever the compute node du jour might be.

When these constraints break down, the programming problem first becomes interesting, then challenging, then maddening, then virtually impossible. The programmer must manage ever more complex data traffic patterns between sub-problems, plus control the order of operations of various tasks, plus attempt to find ways to break larger sub-problems into sub-sub-problems, and so on. If this were easy it would have been done long ago.

Adding accelerators to standard computer architectures is a technique that has been used throughout the history of computer architecture development. Current HPC markets are experimenting with graphics processing units (GPUs) and to a lesser extent field programmable gate arrays (FPGAs).

GPUs have long been a standard component in desktop computers. GPUs are of interest for several reasons: they are inexpensive commodity components, they have fast independent memories, and they provide significant parallel computational power.

FPGAs are standard devices long in use within the electronics industry for quickly developing and fielding specialty chips that are often replaced in products by standard ASICs over time. FPGAs allow HPC users to essentially customize the computer to the requirements of their applications. In addition they should benefit from Moore’s Law advancements over time.

Challenges for accelerator-based systems stem from a single program being run over two different processing devices, one a general-purpose processor with limited speed, and the other an accelerator with high processing speed but with limited overall functionality. Challenges fall into three major areas:

  • Programming — Computers can be built to arbitrarily high levels of complexity, however the average complexity of computer programmers remains a constant. Accelerators add two levels of complexity for applications development, first writing a single program that is divided between two different processor types, and second, writing a program that can take advantage of the specific characteristics of the accelerator.
  • Control and communications — Performance gains from accelerations can be diminished or lost from compute overhead generated from setting up the problem on the accelerator, moving data between the standard processor and the accelerator, and coordinating the operations of both compute units.
  • Data management — Programming complexity is increased and performance is reduced in cases where the standard processor and accelerator use separate independent memories. Issues for managing data across multiple processors range from determining proper data decomposition, to efficiently moving data in and out of the proper memories, to stalling processes while waiting on data from another memory, to debugging programs where it is unclear which processor has last modified a data item.

Many of these issues are associated with parallel computing in general, however they are still significant for accelerator-based operations, and the close coupling between the processor and the accelerator may require programmers to have a deep understanding of the behavior of the physical hardware components.

Purpose-built systems are systems that are designed to meet the requirements of HPC workflows. (These systems were initially called supercomputers.) In today’s market, new HPC architectures still make use of commodity components such as processor chips, memory chips/DIMMS, accelerators, I/O ports, and so on. However they introduce novel technologies in such areas as:

  • Memory subsystems — Arguably the most important part of any HPC computer is the memory system. HPC applications tend to stream a few large data sets from storage through memory, into processors, and back again for a normal workflow. In addition, such requirements as spare matrix calculations lead to requirements for fast access to non-contiguous data elements. The speed at which the data can be moved is the determining factor in the ultimate performance in a large portion, if not the majority, of HPC applications.
  • Parallel system interconnects — Parallel computer essentially address the memory bandwidth problem by creating a logically two dimension memory structure, one dimension is within nodes. i.e., between a nodes local memory and local processors. Total bandwidth in this case is the sum off all node bandwidths and is very high. The second dimension is the node to node interconnect, which is essentially a specialized local area network that is significantly slower in both bandwidth and latency measures than local node memories. As applications become less embarrassingly parallel the communications over the interconnect increases, and the interconnect performance tends to become the limiting factor in overall applications performance.
  • Packaging — The speed of computer components. i.e., processors and memories can be increased by reducing the temperature at which they run. In addition, parallel computing latency issues can be addressed by simply packing nodes closer together, which requires both fitting more wires into a smaller space, and removing high amounts of heat from relatively small volumes.

Developing specialized HPC architectures has, up until recently, been limited by the effects of Moore’s Law, which has shortened product cycle times for standard products, and limited market opportunities for specialized systems. Those HPC architecture efforts that have gone forward have generally received support from government and/or large corporation R&D funds.

Waiting for a technology breakthrough (or the “then a miracle happens” strategy) is always an alternative; it is also the path of least resistance, and one step short of despair. Today we are looking at such technologies as optical computing, quantum entanglement communications, and quantum computers for potential future breakthroughs.

The issue with relying on future technologies is there is no way to tell first, if a technology concept can be turned into viable a product — there is many a slip between the lab and loading dock. Second, even if it can be shown that a concept can be productized, it is virtually impossible to predict when the product will actually reach the market. Even products based on well understood production technologies can badly overrun schedules, sometimes bringing to grief those vendors and users who bet on new products.

The above arguments suggests that the next age of high performance computing could be based on anything from reliance on clusters with speed boosts add-ons, to a brave new computer based on technologies that may not have been heard of yet. (You can never go wrong with a forecast like that.) That said, I am willing to lay odds on purpose-built computers becoming a major component, if not the defining technology of the HPC market within the next five years, for two major reasons.

First, there is no “easy” technical solution. Single thread performance has plateaued; the usefulness of accelerators is dependent on both the parallelism inherent to the application and the connectivity between the accelerator and the rest of the system; and parallelism, while an advantage where it can be found, is not a panacea for computing performance.

Second, the economics of HPC system development have changed. Users cannot simply sit back and wait for a faster CPU, but must make significant investments in either new software, or new architectures, or both. Staying with old economic models will lead to the computation tools defining the science, where work will be restricted to those areas that will run well on off-the-shelf computers.

The HPC market is at a point where the business climate will support greater levels of innovation at the architectural level, which should lead to new organizing principle for HPC systems. The goal here is to find new approaches that will effectively combine and optimize the various standard components into systems that can continue to grow performance across a broad range of applications.

Of course we can always wait for a miracle to happen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire