Oak Ridge National Laboratory Helps Advance Scientific Discovery with HPC

By Nicole Hemsoth

January 9, 2012

download

“The unusual isotope Germanium-72 changes phases as temperature rises”

Oak Ridge National Laboratory leverages Cray XT5TM “Jaguar” supercomputer with AMD OpteronTM processors to advance scientific discovery – Helping to solve the curious case of Germanium-72

There’s a lot we don’t know about the atomic nucleus, even though it was discovered a century ago this year.

We have, of course, learned much. We can get energy by splitting the nucleus in a process known as fission or smashing nuclei together in a process known as fusion. While we can’t say exactly when an unstable nucleus will decay on its own — spontaneously transforming from one isotope to another — we can say how fast a large group of nuclei will do so. In fact, we can confidently determine the half-life of a nucleus—the time in which 50 percent will decay — even in cases in which that half-life is greater than the age of the universe.

The nucleus displays oddities, which when better understood, will help explain our world. One of these is the tendency of protons and neutrons that make up the atomic nucleus — known collectively as nucleons — to bond together in pairs.

Leveraging Great Minds and High Performance Computing

Physicists from Oak Ridge National Laboratory (ORNL), the University of Tennessee, and Germany’s GSI in Darmstadt recently used ORNL’s Cray supercomputer, nicknamed ‘Jaguar’, to explore the pair bonding of neutrons in one uncommon isotope — germanium-72. In doing so they discovered that changes in temperature and rotation take the nucleus through at least two physical phases. Their work, which offers the first realistic description of this kind of phase transition in an atomic nucleus, was featured in the November 19, 2010, edition of Physical Review Letters.

In our mundane lives we witness phase transition anytime we see water chill into ice or boil into steam. Those three states of water — solid, liquid, and gas — are the three phases, and the transitions depend on both pressure and temperature. In the concealed, quantum world of the atomic nucleus, however, phase transitions are more subtle.

An unusual isotope changes phases as temperature rises

Germanium-72 has 32 protons (like all germanium isotopes) and 40 neutrons. Those 40 neutrons pair off strongly when the nucleus is cold and calm, but pairing weakens as you increase the temperature or rotation. What the team discovered, however, was that the relationship is not straightforward. When rotation is high, the pairing weakens as temperature rises, spikes back up at one small range of temperatures, and then weakens as temperature continues to rise. That spike indicates the transition between phases.

“The phase transition is an outgrowth of the pairing, the rotation, and the temperature,” noted team member Hai Ah Nam of ORNL. “What we saw was that at the highest rotation, there was a critical temperature where all of a sudden pairing was favored again. That was interesting.”

She said the discovery is exciting in part because the phase transition is reminiscent of the change undergone by ferromagnetic superconductors. In that case electrons in the superconducting material pair off into Cooper pairs below a critical temperature, allowing the material to conduct electricity without loss.

“At this temperature, pairing was reintroduced,” Nam said of neutrons in the germanium isotope. “It went through this phase transition. It’s like superconducting, where you have to be a certain temperature for the Cooper pairs to form. And that results in the superconducting phenomenon.”

Breakthroughs via Supercomputing

The team simulated germanium-72 on Jaguar using a statistical technique called Shell Model Monte Carlo, pioneered at CalTech in the 1990s by a collaboration that included team members David Dean, now of ORNL, and Karlheinz Langanke, now of GSI. In the nuclear shell model, protons and neutrons occupy successively higher energy levels, with a limited number of nucleons able to occupy each level. So, for instance, two neutrons can sit in the lowest energy level, four in the one above that, two more in the one above that, and so on.

The computational technique looks at protons and neutrons in each of these energy levels. To avoid having to look at every possible configuration of the 72 nucleons—a trillion trillion configurations in all—the technique calculates properties of the nucleus using a quantum statistical average. This approach gives the team a highly accurate answer combined with a known uncertainty.

Even with this sampling technique, the calculation used 80,000 of Jaguar’s 224,000 AMD OpteronTM processor cores for 4 hours to study a single nucleus. “Jaguar’s impact in solving these calculations is tremendous,” Nam said. “Finding this same amount of information used to take months to complete a decade ago. Now we are able to conduct the computational research on a supercomputer in a week.”

The team plans to continue this research to see whether the effect is present in isotopes other than germanium-72. The researchers have also suggested a way to compare the theoretical results to experiments. Initial results indicate that the phase transition seen in germanium-72 may be unique.

“In continuing studies we will look at a dozen or more medium-mass nuclei within this range to see if we can get the same effect,” Nam said. “Because Jaguar is such a formidable resource, we can delve in deeper and essentially perform more ‘experiments’ in a short period of time to gain a better understanding of the science. The speed at which we can look at a large range of nuclei would have been impossible when David first started this.”

One advantage of the Shell Model Monte Carlo technique, she noted, is that it predicts consequences of the phase transition that can be experimentally verified. In this case the amount of energy needed to raise the temperature of the material—known as the specific heat—drops noticeably at the critical temperature.

Nam said the team has been contacted by experimentalists interested in verifying the result, a daunting but doable task. Researchers have been able to examine the specific heat of nuclei in the past, but so far no one has taken a close look at germanium-72.

So what does it mean that at least some nuclei go through this type of phase change? Nobody’s sure. The result is very new, and the implications will take time to become clear.

“The competition between superconductivity, rapid rotation, and temperature is a fascinating topic that can be studied in diverse physical systems, including tiny atomic nuclei and macroscopic-scale ferromagnets,” said team member Witold Nazarewicz, a physicist at the University of Tennessee–Knoxville and Poland’s Warsaw University, as well as scientific director of ORNL’s Holifield Radioactive Ion Beam Facility. “We were happy to find out that our theoretical model can offer the first realistic description of an elusive phenomenon of successive pairing phase transitions in nuclei.”

“So what is the physical impact of learning that germanium has a phase change? Well, phase changes are certainly exploited in many engineering practices,” said Nam. “For now, these results get us one step closer to understanding the atomic nucleus.”

Content courtesy of Oak Ridge National Laboratory. Research sponsored by the DOE Office of Science.

To view the full case study, please visit:

http://www.cray.com/Assets/PDF/products/xt/XT-ORNL-Germanium-0611.pdf

Organizations Involved Include:

U.S. Department of Energy
Oak Ridge National Laboratory
Oak Ridge, TN, USA
www.ornl.gov

University of Tennessee
Knoxville, TN, USA
www.utk.edu

GSI
Darmstadt, Germany
www.gsi.de

Cray Inc.
Seattle, WA, USA
www.cray.com

AMD
Sunnyvale,CA, USA
www.amd.com

 

Detailed Graphic notes:

As a rapidly rotating gemanium-72 nucleus gets hotter, pairing among the protons and neutrons within the nucleus tends to decrease steadily. At one critical temperature, however, the pairing spikes back up, as represented in the center illustration. This odd behavior marks a phase transition within the germanium-72 nucleus. (Illustration by Andy Sproles, ORNL)

 

Jaguar factoids:

Cray XT5™ “Jaguar” supercomputer

With a peak speed of 2.33 petaflops, “Jaguar” is a Cray XT5 supercomputer based on AMD OpteronTM processors located at Oak Ridge Leadership Comput­ing Facility (OLCF). With the ascension to the petascale, Jaguar is able to give computational scientists unprecedented resolution for studying a whole range of natural phenomena, from climate change to energy assurance, to nanotechnology and nuclear energy.

System Overview

Peak Petaflops: 2.33
Six-core AMD Opteron™ processors: 37,376
AMD Opteron cores: 224,256
Compute nodes: 18,688
Memory (TB): 300
Disk bandwidth (GB/s): 240
Disk space (TB): 10,000
Floor space (SqFt): 5,000

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire