NVIDIA Launches First Kepler GPUs at Gamers; HPC Version Waiting in the Wings

By Michael Feldman

March 22, 2012

NVIDIA debuted its much-talked-about Kepler GPU this week, promising much better performance and energy efficiency than its previous generation Fermi-based products. The first offerings are mid-range graphics cards targeted at the heart of the desktop and notebook market, but the more powerful second-generation Kepler GPU for high performance computing is already in the pipeline.

The two new products introduced this week, the GeForce GTX 680 for desktop systems and the GeForce 600M GPUs for notebooks, are twice as energy efficient as their Fermi-based counterparts, according to NVIDIA. And although they represent more powerful graphics processors than the previous generation, the overriding design theme of the new architecture is performance per watt, rather than performance per square millimeter. According to Sumit Gupta, NVIDIA’s senior director of the Tesla GPU Computing business unit, that’s a fundamental change in the company’s architectural strategy. “This is the first time that power is a higher order concern than area,” he says.

That’s because, like nearly every chipmaker on the planet, NVIDIA’s fastest growing market segment is the mobile and notebook/ultrabook space. This architectural emphasis on energy efficiency also dovetails rather nicely with the GPU computing market, where power consumption is also a huge factor. That’s especially true for the Tesla GPU parts that end up in energy-sucking HPC servers. “Every market we’re in has become power sensitive,” says Gupta.

Upping the power efficiency in Kepler relied heavily on a tried-and-true technique, namely increasing the core count while lowering the clock speed. But the architecture is somewhat different. Underneath the covers, the cores are collected into what NVIDIA calls their Streaming Multiprocessors (SMs). In the Fermi version there were only 32 cores per SM. In the Kepler implementation, they reduced the control logic disproportionally and were able to squeeze in 192.

Boosting the core numbers was a no-brainer, given they were moving from the 40nm process technology with Fermi, to the 28nm node for Kepler. In the case of the GeForce GTX 680, for example, there are 1536 cores — three times as many as in the high-end Fermi GPUs, which topped out at 512 cores. At the same time they reduced the clock frequency from 1.5 GHz on the Fermi chip to just a shade over 1 GHz. Although each core is now doing less work, because there are more of them, throughput increases and does so with lower energy consumption.

CPU chipmakers have employed this strategy as well. But because of the greater complexity of the individual CPU cores and their reliance on limited memory bandwidth, core count increases are starting to stagnate (no CPU make ever tripled core count in one generation). Also, since a lot of applications are dependent on single-threaded performance, CPU chip makers try to hold the line on clock speed as much as possible. Ratcheting down the clock speed by a third, as NVIDIA has done here, is unheard for a CPU product.

For Kepler, NVIDIA is claiming a doubling of performance per watt compared to the Fermi-generation GeForce GTX 580. For real gaming applications, the new Kepler products are getting between 1.1 to and 2 times better the performance per watt. In some cases though, it can do even better.

For example, NVIDIA used their Samaritan demo, which illustrates photorealistic gaming, to show a 3X performance boost. Up until this week, that demo required three GeForce GTX 580 cards, drawing a total of 732 watts. It can now be run with a single 195-watt GeForce GTX 680.

To support all the extra throughput, memory bandwidth has been kicked up significantly. The interface on the GTX 680 supports 6.0 Gbps, which is 50 percent more than the 4.0 Gbps available on the GTX 580. According to Gupta, that’s the highest memory bandwidth for any commodity-based chip, NVIDIA or otherwise.

All of these architectural changes — more cores, slower clocks, and more memory bandwidth — will carry over into the second version of the Kepler GPU, a higher-end design which will be aimed primarily at GPU computing applications. This is the one the next-generation Tesla products will be based upon, and the one that will initially end up in two of the most powerful supercomputers in the world: Blue Waters at NCSA and Titan at ORNL.

According to Gupta, the second Kepler implementation will include a lot of capability not present in these first gaming-oriented products. In particular, it will have a lot more double-precision capability (which is not required for most graphics applications) and include new compute-specific features. And of course the raw power of these chips will be quite a bit higher than the mid-range graphics version introduced this week.

Although the company is not yet giving any of the speeds and feeds on the second Kepler, one would expect the core count and peak double precision performance to be two to three times higher, and memory bandwidth to get at least a 50 percent bump. Clock speed will almost certainly be whittled down from the current 1.3 GHz on the Tesla M2090, but perhaps not so aggressively as in these first Kepler gaming parts.

Presumably, the NVIDIA will stick with its 225 watt power envelope for the Tesla lineup, so the engineers just have to balance the core count and clock to land on that thermal design point. Given that power ceiling and the core count increase, NVIDIA should be able to deliver a Tesla GPU with between 1.3 and 1.5 teraflops of double precision performance. On the other hand, there is probably a case to be made to also offer less performant parts that consume less power.

In any case we’ll know soon enough. NVIDIA will probably do their paper launch of the HPC Kepler at the company’s GPU Technology Conference in May. And according to Gupta, the company is on track to put this version into production in Q4. If that goes according to plan, the new Kepler GPUs will be up and running on supercomputers before the end of the year.

Related Articles

NVIDIA Revs Up Tesla GPU

GPUs Will Morph ORNL’s Jaguar Into 20-Petaflop Titan

NCSA Signs Up Cray for Blue Waters Redo

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire