NVIDIA Pokes Holes in Intel’s Manycore Story

By Michael Feldman

April 3, 2012

As NVIDIA’s upcoming Kepler-grade Tesla GPU prepares to do battle with Intel’s Knight Corner, the companies are busy formulating their respective HPC accelerator stories. While NVIDIA has enjoyed the advantage of actually having products in the field to talk about, Intel has managed to capture the attention of some fence-sitters with assurances of high programmability, simple recompiles, and transparent scalability for its Many Integrated Core (MIC) coprocessors. But according to NVIDIA’s Steve Scott, such promises ignore certain hard truths about how accelerator-based computing really works.

Over the past couple of years, Intel has been telling would-be MIC users that its upcoming Knights Corner coprocessor will deliver the performance of a GPU without the challenges of a having to adopt a new programming model — CUDA OpenCL, or whatever. And since the MIC architecture is x86-based (essentially simple Pentium cores glued to extra wide vector units), developing Knights Corner applications will not be that different than programming a multicore Xeon CPU.

Leveraging that commonality, Intel says their compiler will be able generate MIC executables from legacy HPC source code. And it will do so for applications based on both MPI and OpenMP, the two most popular parallel programming frameworks used in high performance computing. Essentially Intel is promising a free port to MIC.

Not so fast, says Scott, the former Cray alum who joined NVIDIA last year its chief technology officer of the Tesla business. According to him, porting applications for MIC, or even developing new ones, won’t be any easier than programming GPUs, or for that matter, any accelerator. In a blog posted on Tuesday, he described the problems with Intel’s manycore narrative and its claims of superiority over GPU computing.

Scott is not arguing against the MIC as an accelerator, per se. He and most of the community are convinced that HPC needs a hybrid (or heterogeneous) computing to move performance forward without consuming unreasonable amounts of energy. Traditional CPUs, whose cores are optimized for single-threaded performance, are not designed for work requiring lots of throughput. For that type of computing, much better energy efficiency can be delivered using simpler, slower, but more numerous cores. Both GPUs and the MIC adhere to this paradigm; they just come at the problem from different architectural pedigrees.

The problem is that running throughput code on a serial processor sucks up too much energy, which is the situation many users are facing today with conventional CPUs. Conversely, running serial code on a throughput processor is just too slow, and defeats the purpose of having an accelerator in the first place.

Even if low single-threaded performance wasn’t an issue, today’s accelerators live on PCIe cards with limited amounts of memory (usually just a handful a gigabytes) that exists at the end of a PCIe bus. So if the entire application were to run on the accelerator, all its data and instructions would have to be shuttled in from main memory in chunks. Consider that today, with only a portion of the application living on the GPU, the PCIe bottleneck can still hinder performance. Stuffing the whole program on the accelerator would make it that much worse.

So the main thrust of Scott’s critique is that for hybrid computing to work, you have to split the application intelligently between the CPU host and the accelerator. That’s true, he says, whether you’re talking about an x86-based accelerator like MIC or a graphic-based one like Tesla. “The entire game now is how do we deliver performance as power efficiently as possible,” he told HPCwire.

Intel has revealed very little about application performance on the future MIC parts, and has not really addressed how that application split is going to work programmatically, or even that it’s necessary. To date, they and some of the early MIC adopters have mostly talked about recompiling existing codes, based on OpenMP and/or MPI, and running the resulting executable natively on MIC.

Running MPI codes on a manycore architecture is particularly problematic. First there’s the memory capacity problem mentioned above (each MPI process uses quite a bit of data). And then there’s the fact that once the number of MPI processes exceeds the accelerator core count — 50-plus for Knights Corner — the application would have to use the server node’s network card to communicate with MPI processes running on other nodes. As Scott points out in his blog, that’s far too many MPI processes for a typical network interface; all the contention would overwhelm the available bandwidth.

OpenMP has the opposite problem, since most programs using this model don’t scale beyond more than 4 to 8 tasks. As a result, there would no way for most OpenMP applications to utilize the 50-plus cores expected on Knights Corner-equipped nodes. And once again, there’s the memory capacity problem. Like MPI, OpenMP expects to live in the relatively spacious accommodations of the CPU’s main memory.

Scott says if you’re just going to use a compiler to transform your existing application to run on the MIC, you’re not doing hybrid computing at all. More importantly, running the entire code on the accelerator does not take performance into account. After all, the idea is to speed up the application, not just recompile it so that it functionally works. “We don’t think it’s legitimate to talk about ease of programming without talking about performance,” he says.

Scott argues that for applications to take advantage of these new throughput processors, programmers will have delve into some sort of hybrid programming model that splits off the parallel throughput code from the serial code. For NVIDIA GPUs, the parallelism can be exposed with CUDA or with the emerging set of OpenMP-like directives for accelerators, known as OpenACC. There is already an initial CUDA port for x86 developed by PGI, so that’s one option. But the OpenACC framework is likely to reach a larger audience of developers since it offers a higher level of abstraction than CUDA and it looks like it will eventually be folded into the industry-standard OpenMP API.

The idea is that programmers can use OpenACC today to develop GPU-accelerated applications with the anticipation they will be able to use the same code for other accelerator-based hardware platforms, like MIC and AMD’s Fusion or discrete GPU processors. Intel and AMD have not jumped on the OpenACC bandwagon as of yet, but were it to be adopted as a standard and demanded by their customers, they would certainly have to support it.

Even OpenACC is not a magic bullet though. The programmer still has to do dive into the source code  and tell the compiler where and how to carve out parallel code for the accelerator. And as Scott admits, that can be a significant effort, especially for large legacy HPC applications that were written for homogeneous CPU-only machines.

But, he maintains, if you’re interested in taking advantage of the performance offered by throughput processor like GPUs and MIC, the work has to be done. Processor clocks are not likely get any faster than they are today. So the only way to increase performance is via parallelism. As Scott says, “Computers aren’t getting faster, they’re only getting wider.”

Related Articles

The Heterogeneous Programming Jungle

NVIDIA Eyes Post-CUDA Era of GPU Computing

Intel Touts Manycore Coprocessor at Supercomputing Conference

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire