What Mainstream Supercomputing Might Mean for the World

By Gareth Spence

April 3, 2012

The age of “mainstream supercomputing” has been forecast for some years. There has even arisen something of a debate as to whether such a concept is even possible – does “supercomputing,” by definition, cease being “super” the moment it becomes “mainstream?”

digital keyholeWhether mainstream supercomputing is here or ever literally can be, however, it is indisputable that more and more powerful capabilities are becoming available to more and more diverse users. The power of today’s typical workstations exceeds that which constituted supercomputing not very long ago.

The question now is, where all of this processing power – increasingly “democratized” – might eventually take the world? There are clues today of what mind-blowing benefits this rapidly evolving technology might yield tomorrow.

Better Products Faster – and Beyond

Supercomputing already undergirds some of the world’s most powerful state-of-the-art applications.

Computational fluid dynamics (CFD) is a prime example. In CFD, the flow and interaction of liquids and gases can be simulated and analyzed, enabling predictions and planning in a host of activities, such as developing better drug-delivery systems, assisting manufacturers in achieving compliance with environmental regulations and improving building comfort, safety and energy efficiency.

Supercomputing has also enabled more rapid and accurate finite element analysis (FEA), which players in the aerospace, automotive and other industries use in defining design parameters, prototyping products and analyzing the impact of different stresses on a design before manufacturing begins. As in CFD, the benefits include slashed product-development cycles and costs and more reliable products – in short, better products faster.

Weather forecasting and algorithmic trading are other applications that today rely heavily on supercomputing. Indeed, supercomputing is emerging as a differentiating factor in global competition across industries.

More Power to More People

As supercomputing’s enabling technologies – datacenter interconnection via fiber-optic networks and protocol-agnostic, low-latency Dense Wavelength Division Multiplexing (DWDM) techniques, processors, storage, memory, etc. – have grown ever more powerful, access to the capability has grown steadily more democratized. The introduction of tools such as Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL) have simplified the processes of creating programs to run across the heterogeneous gamut of compute cores. And there have emerged offers of high-performance computing (HPC) as a service.

Amazon Web Services (AWS), for example, has garnered significant attention with the rollout of an HPC offering that allows customers to select from a menu of elastic resources and pricing models. “Customers can choose from Cluster Compute or Cluster GPU instances within a full-bisection high bandwidth network for tightly-coupled and IO-intensive workloads or scale out across thousands of cores for throughput-oriented applications,” the company says. “Today, AWS customers run a variety of HPC applications on these instances including Computer Aided Engineering, molecular modeling, genome analysis, and numerical modeling across many industries including Biopharma, Oil and Gas, Financial Services and Manufacturing. In addition, academic researchers are leveraging Amazon EC2 Cluster instances to perform research in physics, chemistry, biology, computer science, and materials science.”

These technological and business developments within supercomputing have met with a gathering external enthusiasm to harness “Big Data.” More organizations of more types are seeking to process and base decision-making on more data from more sources than ever before.

The result of the convergence of these trends is that supercomputing – once strictly the domain of the world’s largest government agencies, research-and-education institutions, pharmaceutical companies and the few other giant enterprises with the resources to build (and power) clusters at tremendous cost – is gaining an increasingly mainstream base of users.

The Political Push

Political leaders in nations around the world see in supercomputing an opportunity to better protect their citizens and/or to enhance or at least maintain their economies’ standing in the global marketplace.

India, for example, is investing in a plan to indigenously develop by 2017 a supercomputer that it believes will be the fastest in the world – one delivering a performance of 132 quintillion operations per second. Today’s speed leader, per the November 2011 TOP500 List of the world’s fastest supercomputers, is a Japanese model that checks in at a mere 10 quadrillion calculations per second. India’s goals for its investments are said to include enhancing its space-exploration program, monsoon forecasting and agricultural outputs.

Similar news has come out of the European Union. The European Commission’s motivation for doubling its HPC ante was reported to strengthen its presence on the TOP500 List and to protect and create jobs in the EU. Part of the plan is to encourage supercomputing usage among small and medium-sized enterprises (SMEs), especially.

SMEs are the focus of a pilot U.S. program, too.

For SMEs who are looking to advance their use of existing MS&A (modeling, simulation and analysis), access to HPC platforms is critical in order to increase the accuracy of their calculations (toward predictive capability), and decrease the time to solution so the design and production cycle can be reduced, thus improving productivity and time to market,” reads the overview for the National Digital Engineering and Manufacturing Consortium (NDEMC).

The motivation here is not simply to level the playing the field for smaller businesses that are struggling to compete with larger ones. Big OEMs, in fact, help identify the SMEs who might be candidates for participating in the NDEMC effort launched with funding from the U.S. Department of Commerce, state governments and private companies. One of the goals is to extend the product-development efficiencies and -quality enhancements that HPC has already brought to the big OEMs to the smaller partners throughout their manufacturing supply chains.

Reasons the NDEMC: “The network of OEMS, SMEs, solution providers, and collaborators that make up the NDEMC will result in accelerated innovation through the use of advanced technology, and an ecosystem of like-minded companies. The goal is greater productivity and profits for all players through an increase of manufacturing jobs remaining in and coming back to the U.S. (i.e. onshoring/reshoring) and increases in U.S. exports.”

Frontiers of Innovation

Where might this democratization of supercomputing’s benefits take the world? How might the extension of this type of processing power to mass audiences ultimately impact our society and shared future? Some of today’s most provocative applications offer a peak into the revolutionary potential of supercomputing.

For example, Harvard Medical School’s Laboratory of Personalized Medicine is leveraging Amazon’s Elastic Compute Cloud service in developing “whole genome analysis testing models in record time,” according to an Amazon Web Services case study. By creating and provisioning scalable computing capacity in the cloud within minutes, the Harvard Medical School lab is able to more quickly execute its work in helping craft revolutionary preventive healthcare strategies that are tailored to individuals’ genetic characteristics.

Other organizations are leveraging Amazon’s high-performance computing services for optimizing wind-power installations, processing high-resolution satellite images and enabling innovations in the methods of reporting and consuming news.

Similarly, an association of R&E institutions in Italy’s Trieste territory, “LightNet,” has launched a network that allows its users to dynamically configure state-of-the-art services. Leveraging a carrier-class, 40Gbit/s DWDM solution for high-speed connectivity and dynamic bandwidth allocation, LightNet supports multi-site computation and data mining – as well as operation of virtual laboratories and digital libraries, high-definition broadcasts of surgical operations, remote control of microscopes, etc. – across a topology of interconnected, redundant fiber rings spanning 320 kilometers.

Already we are seeing proof that supercomputing enables new questions to be both asked and answered. That trend will only intensify as more of the world’s most creative and keenest thinkers are availed to the breakthrough capability.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire