Grid Fights Neurological Disease

By Tiffany Trader

April 16, 2012

Grid computing, the forerunner to today’s more popular cloud-based approach to IT, is being used to create advances in the biomedical field. A pan-European grid computing infrastructure, known as the neuGRID project, was established in 2008 to advance new treatments for neurological diseases such as Alzheimer’s. The goal was to become the “Google for Brain Imaging,” i.e., to provide “a centrally-managed, easy-to-use set of image analysis tools with which scientists can answer complex neuroscientific questions.”

neuGRID logoThe project ran from February 1, 2008, to January 31, 2011, and enabled the processing of thousands of brain scans in less than two weeks instead of five years normally required with traditional methods. The condensed discovery process means that researchers can detect early traces of Alzheimer’s, which should lead to better prognoses.

According to the project website:

The aim of neuGRID was to build a new, user-friendly Grid-based research e-Infrastructure based on existing e-Infrastructures by developing a set of generalised and reusable medical services in order to enable the European neuroscience community to carry out research required for the study of degenerative brain diseases.

Researchers from seven countries worked for three years to develop the infrastructure using EUR 2.8 million in funding from the European Commission. The initial prototype system was comprised of five distributed nodes of 100 cores (CPUs) each, connected with grid middleware and accessible via the Internet with a user-friendly interface. Workability tests were run using datasets of images from the Alzheimer’s Disease Neuroimaging Initiative (ANDI), the largest public database of MRI brain scans documenting the progression of Alzheimer’s disease and mild cognitive impairment. The role of neuGRID was to connect the imaging data with facilities and services for computationally-intensive data analyses.

Principal Investigator Giovanni Frisoni, a neurologist and the deputy scientific director of IRCCS Fatebenefratelli, the Italian National Centre for Alzheimer’s and Mental Diseases, commented on the impetus for the project:

“neuGRID was launched to address a very real need. Neurology departments in most hospitals do not have quick and easy access to sophisticated MRI analysis resources. They would have to send researchers to other labs every time they needed to process a scan. So we thought, why not bring the resources to the researchers rather than sending the researchers to the resources?”

The results were truly remarkable, as explained by Dr. Frisoni:

“In neuGRID we have been able to complete the largest computational challenge ever attempted in neuroscience: we extracted 6,500 MRI scans of patients with different degrees of cognitive impairment and analysed them in two weeks, on an ordinary computer it would have taken five years!”

Going forward, neuGRID will live on in the form of a spin-off project, called neuGRID for You (N4U), which is adding high performance computing (HPC) and cloud computing resources to the original grid infrastructure. With EUR 3.5 million in European Commission funding, N4U is set to become a virtual laboratory for neuroscientists by expanding the user services, algorithm pipelines and datasets.

“In neuGRID we built the grid infrastructure, addressing technical challenges such as the interoperability of core computing resources and ensuring the scalability of the architecture. In N4U we will focus on the user-facing side of the infrastructure, particularly the services and tools available to researchers,” Dr. Frisoni says. “We want to try to make using the infrastructure for research as simple and easy as possible. The learning curve should not be much more difficult than learning to use an iPhone!”

An excerpt from the final report highlights the “business case” for employing the grid/cloud model in research:

During its implementation, neuGRID has pioneered the use of distributed computing in biomedical research. The successful data challenge and success of the user training sessions have proved the validity of the neuGRID concept, justifying the effort of populating the infrastructure with services that neuroscientists need for their daily research activity. It illustrates that a new way of doing science in computational neuroscience, where data algorithms and CPUs are de-coupled from the physical location of the neuroscience lab and externalised to the grid, is realistic and feasible. While it is quite natural to believe that if cloud computing (i.e. outsourcing data, applications, and computational resources) is working for corporate business, it might also work for research, providing empirical proof that this is the case if of course at the same time mandatory and greatly persuasive.

neuGRID’s original mandate was to enable neuroscientists to quickly and efficiently analyse MRI scans of the brains of patients with Alzheimer’s disease. Not only has the team been successful in that endeavor, but now their work has created a use case for grid computing that can be applied to other neurological disorders and additional areas of medicine. The architecture is “such that generic medical services can be flexibly adapted to be interfaced to others, specific to areas outside Alzheimer’s and the neurosciences,” the website explains.

Neelie Kroes, European Commission Vice-President for the Digital Agenda, said: “Today’s e-infrastructures enable us to tackle an unprecedented amount of available data and an increasing complexity of modern experiments. The neuGRID initiative allows scientists in the smallest laboratories of the most remote areas to access data treasures and help patients suffering from dementia. It is up to the scientific community to make the most of this remarkable instrument, to cooperate and break traditional barriers, thus bringing us one decisive step closer to doing away with Alzheimer’s and other brain degenerative diseases.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire