Dell Enters Hyperscale ARM Race

By Tiffany Trader

May 29, 2012

On Tuesday, Dell announced a prototype low-power server built with ARM processors, code-named “Copper,” which the company has been developing since 2010. Dell will not be selling the ARM server outright, but will provide these “seed units” to select customers and partners for application development and benchmarking.

There is a growing demand from Internet-based companies for custom-built servers that can scale performance while reducing datacenter operating expenses. The increasing popularity of cloud computing is also pushing the microprocessor market in the direction of power efficient servers for cloud providers who are relying on economies of scale to achieve and maintain profitability.

The ARM chips’s main focus is on power-efficiency and because of that they have become the processor-of-choice for battery-dependent mobile computing platforms. However, the chips that live inside today’s smart phones and tablet devices are becoming increasingly performance-optimized as well, making them attractive to server makers looking for that sweet spot between performance and power consumption.

In its official announcement, Dell noted that it is enabling ARM server development in multiple ways. While the company is delivering its ARM-based servers to select hyperscale customers and partners, it will also support the ARM development space by providing the servers to key ecosystem partners such as Canonical and Cloudera. Dell’s ARM-based servers will even be available to developers via remote access through a partnership with Texas Advanced Computing Center (TACC).

Copper ARM server sled

Dell “Copper” ARM server sled – click for full-size image.

Each ARM microserver runs at 15 watts, about a third the power draw of Intel’s Xeon E3 cloud-friendly chips. For the architecture, Dell selected Marvell’s quad-core Armada XP 78460 chip, which runs at 1.6GHz and handles up to 8GB of ECC memory. Copper’s 3U rackmount chassis contains 48 independent servers and 192 processor cores. There are four ARM server nodes per sled, and 12 sleds total (hence the 48 servers). The total power draw for a full chassis is less than 750 watts.

As it stands today, most servers, including Dell’s, are outfitted with x86 architecture chips, the vast majority from industry stalwarts (and noted adversaries), Intel and AMD. But in an effort to tip the power-profile in their favor, companies whose life-blood depends on enormous server farms, Web-scale outfits like Google and Facebook, are looking to the microserver, a low-power, and slower, platform, to fulfill their data crunching needs at a lower TCO.

Says Steve Cummings, executive director for marketing at Dell’s Data Center Solutions division:

We believe ARM-processor-based infrastructures demonstrate promise for Web front-end and Hadoop environments, where advantages in performance per dollar and performance per watt are critical. And we designed the server specifically for where the market is today, for developers and customers to create code and test performance.

A 2011 global census from DatacenterDynamics cited cost and availability of energy as top concerns of execs planning future datacenter expansions. The same report predicted that datacenter energy use would rise almost 20 percent over the following year. Cloud computing, by some accounts, is expected to offset some or even all of that increase. And no doubt, developments in hardware and fabric technologies, customized for the hyperscale computing era, will be part of the effort to keep energy costs down.

Dell joins the ranks of other server makers who are testing the microserver waters. Last November, HP announced its hyperscale intentions when it debuted Project Moonshot, seeking to redesign servers in preparation for a Web-scale era, and the HP Redstone Server platform, based on Calxeda ARM Cortex processors. The project’s goal was to fit 2,800 servers on a single rack. SeaMicro, a popular microserver startup that alternately packaged both Atom and Xeon chips into an ultra-efficient server design, was acquired by AMD earlier this year. Now AMD is in a position to offer its own low-power server building blocks, making them one to watch in the race to accommodate the ultra-scale datacenter market.

So is Intel worried? Even Intel’s Justin Rattner claimed that so-called weak processors can be “dramatically more efficient” on certain types of cloud workloads versus traditional x86 servers. Intel’s microserver candidates includes Intel Xeon E3 processors that range from 45W down to 20W, and at the Intel Developer Forum (IDF) in Beijing, the chipmaker announced a low-cost, sub-10-watt microserver platform known as Centerton. The 64-bit chip features two Atom processor cores and consumes only six watts of electricity. Intel Labs has also been working on a highly-specialized multicore chip, called the Single-Chip Cloud Computer, which debuted in December 2009. The company says the 48-core chip mimics cloud computing at the chip level and supports highly parallel, scale-out programming models. With all 48 cores running at once, the SCC is said to consume between 25W to 125W.

Of course none of these specialized chip architectures mean much without applications that can make use of them. And that pretty much sums up where the market is at right now, the testing and development phase. Prototypes like Copper give application developers a canvas for creating the next-generation of software, applications and tools that can take advantage of massively parallel computing platforms. The money saved on the hardware side from moving to stripped-down, bare-bones systems will more than pay for the software redesign, resulting in a net gain. That’s the idea behind this whole strategy: the sheer size of the deployment provides the economies of scale to make it work. Or that’s the theory anyway.

Dell says that its initial focus is on evolving the ecosystem, and that it will make its ARM servers generally available “at the appropriate time.” This is a work-in-progress, as Steve Cummings, explains in more detail:

The ARM server ecosystem is still immature, with a limited software ecosystem and (until now) no ARM-based servers from a tier one OEM. Plus, ARM is currently 32-bit technology, which means current 64-bit code would have to be modified to run on 32-bit, and likely be modified again when 64-bit comes out in the next year or two. So customers have told us they don’t plan to put ARM servers into a production environment, but instead want servers to test and validate in their labs.

The manufacturer behind the Dell ARM server chip, Marvell, believes the partnership will lead the way to bullet-proof cloud solutions. This message was underscored by Paul Valentine, vice president of marketing for the Cloud Services and Infrastructure (CSI) Business Unit of Marvell Semiconductor, Inc.:

“Today’s data centers run the distinct risk of over-extension due to the rising popularity of connected lifestyles and the resulting explosion in unstructured data. A key component of Marvell’s all-encompassing cloud-services platform, the Marvell ARMADA XP series of multi-core processors, represents a benchmark in security, scalability, performance and power conservation – ultimately offering a vast amount of headroom to cloud service providers looking to reinforce their capacities for the long haul.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire