Entry-Level HPC: Proven at a Petaflop, Affordably Priced!

By Nicole Hemsoth

May 30, 2012

Computing needs at many commercial enterprises, research universities, and government labs continue to grow as more complex problems are explored using ever-more sophisticated modeling and analysis programs.

A new class of Cray XE6 and Cray XK6 high performance computing (HPC) systems, based on AMD Opteron™ processors, now offer teraFLOPS of processing power, reliability, utilization rates, and other advantages of high-end supercomputers, but with a great  low purchase price. Entry-level supercomputing systems in this model line target midrange HPC applications, have an expected performance in the 6.5 teraflop to 200 teraFLOPS range, and scale in price from $200,000 to $3 million.

These systems can give organizations an alternative to high-end HPC clusters. One potential advantage of these entry-level systems is that they are designed to deliver supercomputing reliability and sustained performance. Users can be confident their jobs will run to completion. And the systems also offer predictability. “There is reduced OS noise, so you get similar run times every time,” said Margaret Williams, senior vice president of HPC Systems at Cray Inc.

These attributes are essential today in competitive industries and research fields where results and progress are based on high-throughput computational workflows. Typically, the output from one job, such as a modeling program or a simulation, is used by additional programs queued up to run in a particular sequence. Any disruption of the workflow can delay decisions on next steps to take. While a small delay can seem minor in the scheme of things, in competitive fields it can make a significant difference.

The new emphasis on sustained performance and computational workflow throughput is beginning to change the way some organizations evaluate solutions. In the past, raw benchmarks, such as the LINPACK or LINPACK per-watt benchmarks would be used to gauge a system’s potential. Now, the attention appears to be moving more towards overall productivity.

“What’s really important is how much real work gets done, not how fast each compute [node] runs,” said Williams. “It’s the science done per-watt that matters.” So rather than looking at how fast a single job can run the more important question is: ‘how many jobs can a system run in a given time?’

For an organization, the reliability and sustainability attributes can offer other advantages. With clusters, additional nodes are often added to a system to be used as spares when one node fails to meet workload spikes. With predictable performance systems, less extra capacity is needed.  Fewer nodes means low operating costs: for example, less electricity should be needed, there are fewer elements to manage, and less rack and floor space is required.

Furthermore, entry-level supercomputers offer organizations a complete system that includes the compute engine, high-performance memory and I/O, a file system and storage. All of the elements are tightly integrated and managed as a single system. Compared to a typical HPC cluster, this can help reduce system administration costs since each element does not have to be managed independently using different management consoles and tools.

And for organizations with higher-end Cray supercomputers, the entry-level Cray systems can be used to help develop and test new programs. This is possible because the entry-level systems use the same hardware and software as their higher end counterparts. The potential benefit here is that development and testing can be kept off of production systems, thus enabling a saving of time on those systems for real work.

Directly compatible with the high-end machines, these entry-level configurations not only help minimize total system costs, but also support Cray’s Cluster Compatibility Mode (CCM), providing users with out-of-the-box installation and running of diverse Independent Software Vendor (ISV) applications across numerous technology segments.

Cray and AMD as Your Technology Partners

Cray and AMD have a long history of collaboration. Over the years, the relationship has produced some of the world’s most productive supercomputers for scientific and commercial research. In fact, in the November 2011 release of the Top 500 supercomputers, three of the top ten and seven of the top twenty supercomputers in the world were Cray systems powered by AMD Opteron™ processors.

Throughout the relationship, AMD has made several major technological leaps in processor architecture and design. Processors have gone from dual-core to quad-core to six-core over the last several years. The recent launch of the AMD Opteron™ 6200 Series processor, which had gone by the code name “Interlagos,” offers the world’s first 16-core x86 processor. The processor’s architecture is very flexible and can be applied effectively to a variety of workloads and problems. Additionally, it supports AVX instructions and offers a performance boost provided by AMD Turbo CORE technology.

For existing Cray customers, the entry-level supercomputers powered by AMD Opteron processors provide investment protection. Over the years, Cray users have been able to upgrade as new technologies become available. This included upgrades to processors, blades, and storage, which allows an organization to leverage an initial investment in a Cray system and scale the system over time.

The entry-level HPC systems are just the latest result in this partnership between Cray and AMD.

The systems offer an affordable price, requisite performance, and the power efficiency needed in organizations that find they must apply more computing resources towards solving increasingly complex problems.

To learn more about the Cray entry-level supercomputers powered by AMD Opteron processors, visit: www.cray.com/ownacray

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire