Green500 Turns Blue

By Michael Feldman

July 5, 2012

The latest Green500 rankings were announced last week, revealing that top performance and power efficiency can indeed go hand in hand. According to the latest list, the greenest machines, in fact the top 20 systems, were all IBM Blue Gene/Q supercomputers. Blue Gene/Q, of course, is the platform that captured the number one spot on the latest TOP500 list, and is represented by four of the ten fastest supercomputers in the world.

Not only did Blue Gene/Q dominate the top of the Green500, but did so in commanding fashion. Although the smaller Q machines tended be slightly more energy efficient, all 20 delivered more than 2,000 megaflops/watt. That turned out to be about twice as efficient as the average for the next 20 supercomputers on the list.

Of those following 20 systems, 10 are accelerator-based. In fact, the 21st and 22nd most efficient supercomputers are the Intel MIC-accelerated prototype cluster (1380.67 megaflops/watt) and the ATI Radeon-equipped DEGIMA cluster (1379.79 megaflops/per watt). The remainder all use NVIDIA GPU parts and are only somewhat less power-efficient.

It’s hard to draw a lot of conclusions about the efficiency of accelerator-equipped machines, since the ratio between the more energy-efficient GPUs (or MIC coprocessors) and the CPUs on these machines has a big impact on the overall results. In other words, a high GPU:CPU ratio system would tend to be yield more megaflops/watt than one with a lower ratio. Further, the current crop of accelerator-based systems tend to yield sub-par Linpack performance (the basis of both the TOP500 and Green500 results) compared to the machine’s peak performance, although this “bias” does point out that it can be difficult to extract performance and performance per watt from these heterogeneous platforms.

A number of x86 CPU-only systems, especially those employing the latest Intel “Sandy Bridge” processors, did rather well the latest rankings. In this category is the new 2.9 petaflop SuperMUC machine that just booted up at Germany’s Leibniz Supercomputing Centre (LRZ) . This IBM iDataPlex cluster sits at number 4 on the TOP500 list and manages a very respectable number 39 placement on the Green500. The system uses an innovative hot-water cooling system that not only saves energy costs, but whose waste heat is repurposed for local use at the LRZ facility. The machine also employs system software that is designed to optimize energy consumption.

The other instructive lesson of SuperMUC is that institutions are willing to endure relatively high energy costs to get leading-edge performance. (SuperMUC is currently the speediest supercomputer in Europe.) Even though its innovative cooling system will supposedly save around a million Euros per year, in energy costs, the high price of electricity in Germany will still make SuperMUC the most expensive supercomputer in Europe to operate.

According to Arndt Bode, LRZ’s chairman of the board who spoke about the new system at ISC’12, energy costs for them are rather steep — 0.158 €/kilowatt-hour as of 2010. That’s around 10 times the cost at Oak Ridge National Laboratory, perhaps the least expensive place to do supercomputing in the US, thanks in large part to cheap blocks of power that can be purchased from the Tennessee Valley Authority. Since SuperMUC consumes 3.4 megawatts, that means the Germans are paying for what an equivalent 34 megawatt system would cost the Oak Ridge boys today.

Considering that supercomputing designers have drawn a 20MW line in the sand for exascale systems, the Germans, in effect, have already resigned themselves to that level of cost. Of course, not everyone is going to be able to plop their exascale systems in the Tennessee Valley (or at other cheap energy locales like Iceland). And energy prices are likely to rise between now and the end of the decade, almost everywhere. But 20MW or more (maybe significantly more) is doable for at least some geographies today, assuming the HPC funding and political will is there.

Anyway you look at it, exaflops-level supercomputing is going to be an expensive proposition, at least initially. The average price of a megawatt in the US is a million dollars per year, and even at Oak Ridge, it probably costs between $200 to $300 thousand. That’s plenty of motivation to reduce the energy footprint of these machines.

Which brings us back to Blue Gene/Q. The largest such system today, the number one Sequoia machine at Lawrence Livermore, delivers 20 (peak) petaflops and draws 7.9MW when it’s running floating-point heavy codes like Linpack. But it would need to be 50 times more powerful to get to an exaflop and would also have to be 25 times as energy-efficient to squeeze such a machine into 20MW.

IBM appears to be on the right track here though, at least from the processor standpoint. Unlike a conventional x86-based HPC cluster, Blue Gene Q is powered by a custom SoC based on the PowerPC A2 core. That processor merges the network and compute on-chip, and is designed as a low-power, high throughput, and high core count (16) architecture. Clock frequency is a modest 1.6 GHz, which is about half that of a top bin Xeon. All exascale processors are likely to follow this general design.

It’s not all up to the processor, however. Memory and system network components will also need analogous redesigns to address their own power issues for exascale. By the way, it would be instructive if the Green500 could expand its mandate and develop useful performance per watt metrics aimed at main memory and interconnects. Linpack is a notoriously bad measurement for data movement, which has become the limiting factor for many applications, “big data” and otherwise. A starting point might be to incorporate the Graph 500 results into a separate set of Green500 rankings.

In the meantime, the list is drawing some much-needed attention to HPC power issues. And competition for those top Green500 spots is going to heat up. In the absence of a Blue Gene/R follow-on — and at this point, IBM has kept mum about extending the BG franchise — there is likely to be some stiff competition from machines powered by the upcoming NVIDIA Kepler K20 GPUs and Intel MIC coprocessors, and their successors. AMD APU-based systems might show up in a couple of years, and the newer SPARC64 offerings from Fujitsu or Chinese systems based on domestically designed chips like Godson may make their presence felt as well. The green revolution in HPC is just beginning.

Related Articles

TOP500 Gets Dressed Up with New Blue Genes

HPC Lists We’d Like to See

IBM Specs Out Blue Gene/Q Chip

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire