Drug Discovery Looks for Its Next Fix

By Michael Feldman

July 31, 2012

Despite the highly profitable nature of the pharmaceutical business and the large amount of R&D money companies throw at creating new medicines, the pace of drug development is agonizingly slow.  Over the last few years, on average, less than two dozen new drugs have been introduced per year. One of the more promising technologies that could help speed up this process is supercomputing, which can be used not only to find better, safer drugs, but also to weed out those compounds that would eventually fail during the latter stages of drug trials.

According to a 2010 report in Nature, big pharma spends something like $50 billion per year on drug research and development. (To put that in perspective, that’s four to five times the total spend for high performance computing.) The Nature report estimates the price tag to bring a drug successfully to market is about $1.8 billion, and rising. A lot of that cost is due to the high attrition rate of drugs, which is caused by problems in absorption, distribution, metabolism, excretion and toxicity that gets uncovered during clinical trials.

Ideally, the drug makers would like know which compounds were going to succeed before they got to the expensive stages of development. That’s where high performance computing can help. The approach is to use molecular docking simulations on the computer to determine if the drug candidate can bind to the target protein associated with the disease. The general idea is to find the key (the small molecule drug) that fits in the lock (the protein).

AutoDock, probably the most common molecular modeling application for protein docking, is a one of the more popular software package used by the drug research community. It played a role in developing some of the more successful HIV drugs on the market. Fortunately, AutoDock is freely available under the GNU General Public License.

The trick is to do these docking simulations on a grand scale. Thanks to the power of modern HPC machines, millions of compounds can now be screened against a protein in a reasonable amount of time. In truth, that timeframe is dependent upon how many cores you can put to the task. For a typical medium-sized cluster that a drug company might have in-house, it would take several weeks to screen just a few thousand compounds against one target protein. To reach a more interactive workflow, you need a something approaching a petascale supercomputer.

But not necessarily an actual supercomputer. Compute clouds have turned out to be very suitable for this type of embarrassing parallel application. For example, in a recent test with 50,000 cores on Amazon’s cloud (provisioned by Cycle Computing), software was able to screen 21 million compounds against a protein target in less than three hours.

Real supercomputers work too. At Oak Ridge National Lab (ORNL), researchers there used 50,000 cores of Jaguar to screen about 10 million drug candidates in less than a day. Jeremy C. Smith, director of the Center for Molecular Biophysics at ORNL, believes his type level of virtual screening is the most cost-effective approach to turbo-charge the drug pipeline. But the real utility of the supercomputing approach, says Smith, is that it can also be used to screen out drugs with toxic side effects.

Toxicity is often hard to detect until it comes time to do clinical trials, the most expensive and time-consuming phase of drug development. Worse yet, sometimes toxicity is not discovered until after the drug has been approved and released into the wild. So identifying these compounds early has the potential to save lots of money, not to mention lives. As Smith says, “If drug candidates are going to fail, you want them to fail fast, fail cheap.”

At the molecular level, toxicity is caused by a drug binding to the wrong protein, one that is actually needed by the body, rather than just selectively binding to the protein causing the condition. The problem is humans have about a thousand proteins, so every potential compound needs to be checked against each one. When you’re working with millions of drug candidates, the job becomes overwhelming, even for the petaflop supercomputers of today. To support the toxicity problem, you’ll need an exascale machine, says Smith.

Besides screening for toxicity, the same exascale setup can be used to repurpose existing drugs for other medical conditions. That is, the drug docking software could use approved drugs as the starting point and try to match them against various target proteins know to cause disease. Right now, drug repurposing is typically discovered on a trial-and-error basis, but the increasing number of compounds that are now in this multiple-use category suggests this could be rich new area of drug discovery.

In any case, sheer compute power is not the complete answer. For starters, the software has to be scaled up to the level of the hardware, and on an exascale machine, that hardware is more than likely going to be based on heterogenous processors. But since the problem is easily parallelized (each docking operation can be performed independently of one another), at least the scaling aspect should be relatively easy to overcome.

The larger problem is that the molecular modeling software itself is imperfect. Unlike a true lock and key, proteins are dynamic structures, and the action of binding to a molecule changes their shape. Therefore, physics simulation is also required to get a more precise match.

AutoDock, for example, is only able to provide a crude match between drug and protein. To get higher fidelity docking, more compute-intensive algorithms are required. Researchers, like those at ORNL, often resort to more precise molecular dynamics codes after getting performing a crude screening run with AutoDock.

None of this is a guarantee that virtual docking on exascale machines is going to launch a golden age of drugs. It’s possible that researchers will discover that there are just a handful of small molecule compounds that actually exhibit both disease efficacy and are non-toxic. But Smith believes this approach is full of promise. “This is the way to design drugs since this mirrors the way nature works,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire