Intel Adds Programming Support for Latest Silicon

By Michael Feldman

September 6, 2012

We’re only a little more than halfway through 2012, but Intel has already announced the 2013 versions Parallel Studio XE and Cluster Studio XE, two software suites that support x86-based parallel programming for high performance computing and beyond. Intel refreshes their software development offerings each year at about this time to sync up its tool support with the latest and greatest silicon and to add new features for developers. And since the chipmaker has been busy churning out new microarchitectures, there’s lots of new software gadgetry.

The refresh will be especially interesting for HPC developers, since Intel is including full support for its upcoming Xeon Phi coprocessor, the chipmaker’s manycore product line that is set to debut before the end of the year. Although Intel had beta versions of some of these Phi-capable tools and libraries prior to this, the 2013 toolset will provide complete support for HPC programmers developing codes for Knights Corner, the company’s first commercial manycore offering.

By design, Xeon CPUs and Xeon Phi share the same basic x86 ISA. However, the SIMD instructions and vector width are not shared, so it’s up to the compiler and libraries to abstract away that difference by automatically generating the appropriate code for the intended target — which it does. But as we’ve reported before, tuning applications for optimal performance on Xeon Phi is more than likely going to involve code changes. Nevertheless, the ability to do a simple recompile and link on existing code to get a working Xeon Phi executable will remove a lot of pain and suffering while porting HPC applications.

The new Parallel Studio will also include compiler and tool support for “Ivy Bridge,” the 22nm shrink of the Sandy Bridge microarchitecture. Again, Intel had support for these processors prior to this release, but they’ve been able to tune performance thanks to early customer feedback and in-house experience with the chips. Ivy Bridge parts for desktop and mobile platforms are already in the field; server versions are set to arrive next year.

Support for “Haswell,” Intel’s next microarchitecture following Ivy Bridge, has also been added. Haswell will include interesting goodies like transactional memory support, a feature that is designed to make parallel programming much easier since it automates the protection of shared data across threads. IBM’s Blue Gene/Q chip implements this feature today and it’s no big surprise that Intel has followed suit. The first Haswell CPUs should start shipping in 2013, although the server chips are not likely to arrive until the following year.

Beyond just supporting new silicon, Intel has also added a bunch of enhancements designed to make programming and debugging parallel apps easier. Some of major new features include:

Java profiling: Although Java is not used much in HPC codes, some financial applications do wrap Java around their performance-sensitive algorithms. This new profiling capability could help those users determine if those code bits are causing bottlenecks.

CPU power analysis: This is used to determine the sleep state of the processor to make sure unused resources are in their proper low-power mode. Obviously, if unused cores are spinning rather than sleeping, that just heats up the datacenter and make the utility companies richer.

Pointer checking: An option for the C/C++ compiler that determines when a pointer with a specified address range (one attached to a malloc, array or other data structure) starts accessing data outside its specified limits. This can be quite a useful feature since rogue pointers can silently corrupt your data, which as far as programmers are concerned, is the devil’s work.

Heap growth analysis: Intel added a variety of new ways to run down memory leaks. Tracking them manually with a debugger or printf statement can be one of the most frustrating and tedious endeavors. Even if this feature only works some of the time, it’s still worth it.

Conditional numerical reproducibility: This ensures that floating point calculations produce consistent results every time they are executed (assuming the same machine). Since the order of operations can change across different runs, rounding errors can generate somewhat different results, which while still valid, can be problematic for things like test suites and acceptance testing. The only downside to turning on this feature is a 10 to 20 percent performance penalty.

Fortunately, performance is usually going in the other direction. According to Intel Software director James Reinders, these latest C/C++ and Fortran compilers and runtime libraries are speedier than ever and among the best in the business. For AVX floating point operations in particular, the Intel C++ compiler outruns some of the more popular competition by a wide margin. Using the SPECfp_base2006 floating point benchmark, Intel generates code that executes 97 percent faster and 164 percent faster than that of Microsoft’s Visual C++ and GCC, respectively.

Not everyone relies on fast compilers though. Reinders says their most demanding customers will resort to the analysis tools to get the ultimate in performance. “If you just want to do a recompile and link with a library, you can get a good speedup,” he explains. “But if you want to start chasing how many TLB misses you have and get the compiler to push pages around so you can get the top score on something, we support that too.”

Parallel Studio XE 2013 is available starting this week and retails at $1,599-$2,299 — depending on if you want Fortran, C/C++ or both. Cluster Studio XE 2013 is basically a superset of Parallel Studio, adding MPI libraries and analysis tools, as well as a cluster installation utility. It retails for $2,949, and is scheduled to ship in the fourth quarter of 2012.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire