Now at AMD, John Gustafson Wants to Light a Fire Under GPU Computing

By Michael Feldman

September 13, 2012

AMD looks like it’s getting set to jump back into the GPU computing arena with chips a-blazin. A couple of weeks ago, the company signed up HPC industry-heavyweight John Gustafson as the chief architect for the Graphics Business Unit, what used to known as ATI. Gustafson will essentially fill the CTO role there, driving the technology roadmap and direction for the chipmaker’s discrete GPU business — the Radeon and FirePro lines.

Gustafson is best known for Gustafson’s Law, a partial refute of Amdahl’s Law that redefined conventional wisdom on parallel computing in the modern age. In his most recent position at Intel, he drove research on next-generation computing and storage technologies. Prior to that, he served as the chief exec at Massively Parallel Technologies, a role he took on after leaving his CTO gig at ClearSpeed Technology.

Gustafson’s work at ClearSpeed, a company that built purpose-built floating point accelerators for high performance computing, suggests AMD is interested in applying that expertise to its GPU business. “I suspect that is one of the reasons they brought me in,” he told HPCwire.

Ironically, it was the emergence of general-purpose GPUs by NVIDIA and AMD six years ago that hastened the demise of ClearSpeed, as well as other special-purpose HPC accelerators, like IBM’s PowerXCell 8i Cell processor. As GPUs evolved toward generalized vector processors, it put accelerators on the same path as other commodity chips, significantly narrowing the appeal of custom-built silicon.

Gustafson believes the dual role of the modern GPU, as a graphics engine and compute accelerator, is a solid combo. He sees a lot of overlap between the two domains, given that much of the processor logic for visualization and technical computing can be shared. According to him, compute-specific features don’t end up taking a lot of extra real estate on the die, and in some cases, will actually will save transistors. “People didn’t realize that sometimes the functions done for graphics are exactly what are needed by the HPC community,” explains Gustafson.

But as far as GPU computing is concerned, the company is playing catch up with NVIDIA. Although AMD made an initial investment in the FireStream line of GPU accelerators, its lack of software development support and its reliance on an immature OpenCL programming toolset made for a weaker offering, especially in contrast to NVIDIA, which had built a separate business unit (Tesla) and toolset (CUDA SDK) to drive its GPU computing product line.

But AMD certainly has the wherewithal to make a comeback. The chipmaker’s aggregate GPU business and graphics processor designs are on par with that of NVIDIA’s (in contrast to AMD’s CPU business, which is a distant second to Intel in market share). And although AMD still doesn’t have a mature HPC-oriented software stack to offer, OpenCL has come a long way over the past few years and could begin to challenge CUDA’s current dominance. “I think it is inevitable, especially with both AMD and Intel behind it, that OpenCL will become the de facto solution,” says Gustafson.

From the hardware perspective, the company has been busy refreshing its GPU computing products. Last month, AMD launched two new FirePro cards, the S9000 and S7000 aimed at the server market. The dual-slot S9000 is the more capable one, computationally speaking, sporting ECC memory and 3.23 teraflops of single-precision performance and 806 gigaflops in double-precision performance.

Those numbers are pretty much on par with NVIDIA’s K10 Kepler product, although it’s likely to be a good deal less competitive against the upcoming K20. In any case, multiple teraflops, even the single precision variety, are not to be taken lightly, and this is probably just the beginning of a larger push by AMD. Although he didn’t want to tip his hand too much, Gustafson said he has some “very disruptive ideas for this market… that could dramatically increase the operations per watt, and I think that’s what we need for exascale right now.”

One approach that he’s been kicking around has to do with hardware designs that deliver “good-enough” results. Whether for graphics or computation, Gustafson believes there’s a lot of extra energy efficiency that can be squeezed from the silicon if you match up the application requirements more precisely with the hardware resources needed. He says the industry has tended to sweep those issues under the rug.

At least part of that has to do with matching the precision of the data to the task at hand. In HPC, for example, software tends to default to double precision (64 bits). But if you only need, say, 10 bits to do a calculation, double precision ends up wasting a lot of energy in sending unneeded bits hither and yon across the machine. On the other hand, if the application requires 256-bit accuracy, the hardware should be flexible enough to deal with that as well.

Another way to attack the performance per watt challenge is integrating the GPU logic into a more general-purpose chip, like AMD does with its APU products. While Gustafson thinks that can be a great solution for certain classes of applications that need that type of unified memory model, for others, a dedicated SIMD compute engine with several gigabytes of extremely high bandwidth is what’s called for.

“For about 30 years now, people have been telling me that we’re going to witness a disappearance of discrete accelerators, because their functions will be subsumed into the general-purpose processor,” he says. “But there always seems to be a need for something that is extraordinarily high-powered, but specialized so that you don’t want to make everybody pay for it. I don’t see a change to that.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire