NVIDIA Launches Fifth-Generation CUDA

By Michael Feldman

October 15, 2012

Chipmaker NVIDIA has released CUDA 5, its latest and greatest toolkit for GPU computing. This new version adds Kepler hardware support for the supercomputing crowd as well as extra functionality to boost developer productivity. CUDA 5 is being launched just a few months ahead of the new K20 GPU, which is scheduled to be available before the end of the year.

Supporting advanced hardware features and increasing developing friendliness have always been a priority for the CUDA software engineers, but with Intel’s Xeon Phi and its built-in support in Parallel Studio expected to be released about the same time as the K20, there is an additional incentive for NVIDIA to make its programming platform more CPU-like.

The CUDA 5 release candidate has been out since spring, so GPU computing enthusiasts already have a taste of what it can do. Will Ramey, senior product manager of the NVIDIA’s GPU Computing Software group, says from the level of interest he’s seen from the early release, he’s expecting it to have a significant impact. “I believe this is going to be our most successful and widely used CUDA release ever,” he told HPCwire.

As far as the Kepler hardware goes, CUDA 5 will support the new “dynamic parallelism” and RDMA-enabled GPUDirect – two significant additions that the new Kepler chips will bring to high performance computing. For most programmers, the first feature will have a more far-reaching impact on application development. Dynamic parallelism allows the GPU to spawn its own threads, rather than having to rely on the CPU host to do it. That means a whole host of codes that used to require too much CPU-GPU interaction to make for a feasible port, can now be transitioned to the Kepler GPUs without the constraint of the communication overhead.

To make that type of code development more comfortable, NVIDIA has come up with GPU callable libraries, whose routines can be called natively from the application code running on the graphics processor. Prior to this, all the standard libraries were callable from the host side only, which made sense since prior to dynamic parallelism, the CPU was in charge of the application’s control flow. The design allows for plug-in APIs and callbacks, which enables developers to extend the capabilities of these routines even further.

NVIDIA is getting the ball rolling here by providing its own CUDA BLAS (Basic Linear Algebra Subroutines) package as a callable library. But the more significant impact is that it will allow ISVs and third-party developers to create these libraries as well, and build up a set of kernel packages, which can be shared more widely across the GPU computing ecosystem

Further, these callable libraries can be compiled separately, just as you would in a typical CPU build environment (Prior to this, all the code for a GPU app had to compiled together as monolithic source deck.) So you can build a GPU kernel from a number of source files and just link the individual objects at build time. This particular feature has no dependency on the Kepler GPUs and dynamic parallelism, so it’s applicable to the Fermi generation GPUs as well.

Because you can compile each source file individually, developers can enjoy significantly faster turnaround during intensive software development. According to Ramey, one NVIDIA customer had an application that encapsulated around 47,000 lines of code, and if just a single line was changed, it took around a minute to recompile all the sources. With this capability, the customer’s library recompilation now takes about four seconds.

The GPUDirect feature, which includes a hardware assist for RDMA, is also supported in the CUDA 5 software. It allows code that runs in the GPU to exchange data with other GPUs or any PCIe devices, without needing to coordinate it through the CPU host (although GPUDirect-aware software is also required for the PCIe device). That saves time for both the CPU and GPU.

With GPUDirect, InfiniBand host adapters and PCIe-connected sensors can take advantage of the RDMA acceleration  by talking directly with the GPU. GE already has some of this technology working with some of its embedded systems outfitted with custom sensors that stream data into the graphics chip.

The final big addition in CUDA 5 is support for Linux and Mac OS development via an integration of NVIDIA’s Nsight development environment for Linux with the open source Eclipse IDE. CUDA 4 offered a shrink-wrapped development environment for Windows via a Visual Studio integration, but Linux users were left to cobble something together themselves. With CUDA 5, compiling, debugging, performance analysis, and other dev tools are now integrated into the Eclipse interface, providing a much more user-friendly interface for Linux developers.

As with the CUDA toolkits that went before it, this fifth generation is backward compatible all the way to the first G80 CUDA chip, when NVIDIA started its GPU computing push in earnest. As such, this latest version can target over 450 million GPUs in the field today. And since CUDA is free for the taking from NVIDIA’s developer site, there’s not much of a downside to pulling in this latest upgrade.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire