Opinion: The Presidential Choice for Science and Technology

By Michael Feldman

October 25, 2012

With the looming US elections just days away, it’s worth considering what effect the choice for President will have on federal science and technology policies for the next four years. While this is hardly a hot button issue in most voter’s minds, these policies will have a much bigger impact on the quality of people’s lives than the political soundbites currently being sprayed across the public airwaves.

In one way or another, most economic growth today is being driven by IT and, more generally, scientific innovation. Certainly, higher worker productivity – not always a good thing, by the way, in times of high unemployment – is strongly correlated with advancements in computer technology and the growth of knowledge-based economies. Internet commerce, cloud computing, DNA sequencing, consumer electronics, and good old-fashioned supercomputing are transforming whole industries. The big economic winners in the 21st century will go to those countries able to best foster these technologies.

The problem with dissecting a policy issue like this is that both Obama and Romney are ostensibly pro-science and technology. This issue doesn’t have the emotional touchstones and sharp divisions of something like the abortion debate. For science and technology, there is essentially no debate. Both candidates want to support these endeavors for the obvious reasons of spurring economic growth and high-tech jobs.

Notwithstanding certain Republicans’ aversion to dealing seriously with science-based topics like climate change and evolution, Romney has staked out a position closer to the mainstream. According to a set of questions posed by Scientific American and ScienceDebate.org, Romney (not surprisingly) favors business-friendly policies to encourage more science-technology entrepreneurship: lowering the corporate tax rate, making the R&D tax credit permanent, reducing regulations, implementing tort reform – the usual conservative laundry list of remedies to make capitalism ever more laissez-faire.

Romney also believes the idea of using the government as a venture capitalist for budding tech startups to, as he puts it, “pick winners and losers,” is misguided. Somewhat at odds with this philosophy is that he still thinks the federal government has a role to play in supporting basic R&D. According to him, he will “focus government resources on research programs that advance the development of knowledge, and on technologies with widespread application and potential to serve as the foundation for private sector innovation and commercialization.” How his government would sift the winners and losers of research projects is left unsaid.

On the education front, Romney points to the Nation at Risk study to illustrate the dysfunctional nature of the country’s K-12 institutions. To remedy this he espouses the traditional Republican agenda of using school choice, standards testing, and improved teacher recruitment to help boost science education.

Obama takes a more bottom-up and spend-free approach. For example, he wants to inject 100,000 more science and math teachers into schools over the next decade, and use them to train a million scientists and engineers. He is also in favor of doubling funding for agencies like the DOE, NIH and NSF to expand the federal R&D base. Of course, he can’t perform that doubling by decree – a topic we’ll get to in a moment.

In Obama’s American Recovery and Reinvestment Act of 2009, $100 billion was allocated for basic research, education, and various IT infrastructure projects. While that kind of spending represented a useful economic kick in the pants for a country in recession, the policy model is questionable. You don’t just invest in fundamental R&D and infrastructure because you’re in an economic tailspin. You do so continuously, and probably even more so when the economy is booming and federal coffers are full.

Which gets us to the real challenge of either candidate’s agenda: the US Congress. That is the body that actually appropriates funding, and although science and technology initiatives get broad bipartisan support in both the House and Senate, spending for them does not. For a variety of reasons, both political and economic, the US has become less and less inclined to do long-term investments. And since the R&D community relies on consistent funding to keep multi-year research in place, life there is becoming more precarious.

The America COMPETES Act is the poster child for the dysfunctional nature of federal R&D funding for Science, Technology, Engineering, and Mathematics (STEM). Initially passed into law in 2007 under the Bush Administration, it set out to boost STEM support across the major federal agencies. It was never fully funded to its intended levels, and despite being reauthorized in 2010 (in reduced form), it has failed to live up to its intended goals.

The overarching problem is the federal deficit and the public’s antipathy to raising taxes, which puts unrelenting pressure on discretionary spending. On top of that is a conservative Republican party that is committed to shrinking such spending, and a moderate Democratic party that seems incapable of offering any significant opposition.

The irony is that both Romney and Obama, and Congress for that matter, recognize the importance of technology leadership, and what it means to the future of the country. Everyone’s for it, but the political will to make it an investment priority is missing. Romney and his Republican cohorts believe that it can be done on the cheap, by encouraging private enterprises to take up the R&D slack of the federal government, while the Obama contingent thinks they can convince their opposition to loosen the purse strings. It’s hard to imagine such wishful thinking will lead to a happy ending.


Related articles

Presidential Supercomputing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire