Texas Instruments Puts ARM-DSP Processors Into Play for HPC

By Michael Feldman

November 20, 2012

NVIDIA, Intel and AMD were not the only chip vendors unveiling new HPC accelerators last week SC12. Texas Instruments (TI) announced a set of heterogeneous processors that they believe will offer among the best performance per watt in the industry. In this case, the chipmaker glued an ARM CPU and digital signal processor (DSP) together on the same die, offering a low-power SoC with an impressive number of FLOPS.

This represents TI’s second attempt to push a wedge into the high performance computing space. The company made its initial foray into the market in October 2011 when it introduced its multicore Keystone DSPs (TMS320C66x). The primary destination of those chips was 4G cellular base stations and radio network controllers, but since floating point functionality had to be added to serve that market, TI felt the same silicon could double as HPC accelerators.

One of the problems with the standalone DSP devices being used for HPC was that the application kernels had to be offloaded from a CPU host to the DSP. That wasn’t because the DSPs couldn’t run a whole application (the DSP is closer to a manycore CPU than a GPU), but because there was no Linux OS or MPI library ports for the architecture. ARM, though, had support for both of these pieces of software, allowing developers to use a traditional driver-accelerator model.

There are actually six new SoCs being introduced by TI, two of which are ARM-only (no DSP integration) that are aimed at powering routers, switches, wireless appliances, and other networking devices. The four remaining parts are the ARM-DSP heterogenous chips. These heterogeneous chips are fully tricked-out SoCs, with an ARM Cortex A15 CPU, a Keystone DSP, a shared memory controller, an integrated fabric and an I/O interface. The fabric itself is a custom design from TI, known as TeraNet, which delivers a low latency, multi-terabit/second fabric that connects the ARM CPU, DSP and memory controller.

Of the four heterogeneous, two are high-end parts – the 66AK2H06 and 66AK2H12 – targeted to high performance computing, as well as media processing, video analytics, gaming, VDI, and radar. The 66AK2H12 4-core ARM/8-core DSP is the more powerful of the two. It offers 198 gigaflops of single precision (SP) floating point performance or 70 gigaflops in double precision. That includes the DSP floating point as well as the Neon FP unit in the ARM CPU.

Although, this ARM-DSP SoC represents only about half the FLOPS of a high-end x86 CPU, the TI chip delivers this in about one-tenth the power – 13 to 14 watts. For single precision, that works out to about 16 SP gigaflops per watt, which is about the same as last year’s stand-alone 8-core DSP chip, sans CPU. It’s also nearly as good as latest NVIDIA’s K10 Tesla part, which delivers about 20 SP gigaflops per watt.

Since the ARM CPU is 32-bit architecture, memory reach for these chips is limited. In fact, each SoC can only access up to 16 GB – not much compared to standard x86 CPU, but about twice as much as a traditional accelerator. The hetero chips, though, don’t need an external CPU to feed it, as the K10 does; the on-chip ARM serves as the host driver. This eliminates the PCIe communication overhead of a CPU hooked to an discrete accelerator.

And since the ARM and DSP units share some of the same memory, it can at least potentially simplify programming of these devices. In that sense, it’s closer to AMD’s Fusion (or APU) architecture, which glues an x86 CPU and GPU onto the same die. At this point though, the AMD offerings are being targeted for client devices, such as laptops, rather than servers.

TI is actually not making so much of a distinction in where their chips will end up. According to Arnon Friedmann, TI’s business manager for the multicore processors unit, the same SoCs targeted for servers could also be applied to embedded devices. For example, a sensor network of cameras doing video surveillance could use an ARM-DSP chip to do some local image processing; the output of which could then be shunted to a server farm of these same chips to perform deeper analytics on the pre-processed video.

“That’s a level of scalability that we think our devices bring, which others in HPC don’t offer today,” Friedmann told HPCwire. “So if you look at NVIDIA [GPUs] and Intel MIC, there really aren’t cut-down versions of these really high performance devices and they’re not quite as geared for embedded as we are.”

For HPC-type developers, TI offers both OpenMP and MPI. The chipmaker also has an alpha version of OpenCL that supports an ARM CPU that can work in conjunction with the on-chip DSP. Down the road, TI is looking to support the newly hatched OpenMP accelerator directives, which are expected to be officially codified in the standard sometime next year.

As with the other accelerators from NVIDIA, Intel and AMD vying for HPC business, the success of the TI parts will depend upon how easy they are to program and how much application performance ensues. Regarding the latter, there is already some encouraging news. According to Friedmann, an FFT kernel from an aperture radar code produced performance on par with that of a GPU, but when they moved the entire application to the chip, performance was boosted 8-fold. Friedmann says interested parties are looking to do similar ports for even larger applications.

Right now, the chipmaker is trying to bring in more HPC users to move their MPI codes over to their ARM-DSP SoCs in order to drum up interest from server makers to build hardware. In the meantime, for do-it-yourselfers, TI’s two SoCs aimed at HPC are available for sampling now. Broader availability is expected in the first quarter of 2013, with general availability of evaluation modules coming in the second quarter.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire