OpenMP Takes To Accelerated Computing

By Michael Feldman

November 27, 2012

OpenMP, the popular parallel programming standard for high performance computing, is about to come out with a new version incorporating a number of enhancements, the most significant one being support for HPC accelerators. Version 4.0 will include the functionality that was implemented in OpenACC, the accelerator API that splintered off from the OpenMP work, as well as offer additional support beyond that. The new standard is expected to become the the law of the land sometime in early 2013.

In high performance computing, OpenMP serves as the de facto parallel programming framework for shared memory environments — that is, code that shares a coherent memory space within a server node. Combined with MPI, which supports distributed parallelism across many nodes, the two standards provide the software foundation for most HPC applications.

Since the advent of multicore CPUs, and more recently attached accelerators like GPUs, parallelism at the node level has skyrocketed. While OpenMP has supported multicore processors for most of its 15-year history, support for accelerators is just now being folded in.

Some would say a little late. GPU computing has been around for six years, thanks mostly to the efforts of NVIDIA, which has spearheaded this new programming paradigm. In fact, the GPU maker’s early and mostly unchallenged entrance into HPC acceleration led to the emergence of a number of other parallel programming frameworks, including NVIDIA’s own CUDA software toolset, OpenCL, and more recently, OpenACC.

OpenACC is somewhat of a historical accident. Although the OpenMP accelerator work began a few years ago, at that time NVIDIA had the only credible products on the market, namely its Tesla GPU offerings. Customers of those products wanted a directives-based API for current development work that offered a higher level framework than either CUDA or OpenCL, and had at least some promise of hardware independence. At the time, it looked like that until Intel brought its Xeon Phi coprocessor to market there would be no OpenMP accelerator standard. So NVIDIA, along with Cray, and compiler-makers CAPS enterprise and The Portland Group Inc (PGI), developed OpenACC based on some of the initial OpenMP effort.

As a result of this common history, both OpenMP and OpenACC offer a directives based approach to parallel programming, and in the case of developing codes for accelerators, share many of the same capabilities. Intel senior scientist and OpenMP evangelist Tim Mattson says the emerging OpenMP accelerator standard is more or less a superset of the OpenACC API. According to him, porting an OpenACC code to OpenMP will be relatively easy. “Moving from OpenACC to the OpenMP directives as defined in the current Technical Report, is trivial,” says Mattson.

The Technical Report he refers to is the document released by the OpenMP Architecture Review Board (ARB) three weeks ago, the idea being to gather user and vendor feedback before incorporating the new directives into OpenMP 4.0. Assuming all goes as planned the final version of the accelerator directives will be slid into OpenMP 4.0 by the first quarter of 2013, first as a release candidate, and soon thereafter as an official standard. The new version will also have a number of other enhancements including thread affinity (enables users to define where to execute OpenMP threads) initial support for Fortran 2003, SIMD support (to vectorize serial and parallelized loops), user-defined reductions, and sequentially consistent atomics.

The Technical Report was a product of the ARB working group on accelerators, which included all four OpenACC backers. So it’s a given that GPUs will be well-supported in the OpenMP going forward. But since the working group also included x86 vendors Intel and AMD, DSP provider Texas Instruments, as well as hybrid computer-maker Convey, there is likely to be something in the new standard for everyone. The goal is to allow developers to write target-independent applications that can take advantage of the latest GPUs from NVIDIA and AMD, Intel’s Xeon Phi, FPGAs, and even the TI DSP chips. The directives are also designed to allow for future types of accelerators.

The trick is to design the compiler directives abstractly enough to hide the hardware dependencies for a diverse group of architectures, but not so ethereal so that it becomes impossible for compilers to generate efficient, performant code from them. Assuming the compiler implementations from Intel, PGI, CAPS, and others live up to that ideal, the developer community will likely gravitate toward the new OpenMP standard.

For the time being though, it’s business as usual for the OpenACC backers. A draft of version 2.0 was made public for comment at the recent Supercomputing Conference (SC12). In concert, both PGI and CAPS announced OpenACC compiler support for the latest accelerators — Intel’s Xeon Phi coprocessor, NVIDIA’s K20/K20X GPUs, AMD APUs and GPUs, and the ARM-based CARMA platform. For the near-term, at least, both OpenACC and OpenMP accelerator support looks like it will move forward in tandem.

How long that lasts is not clear. But given the propensity of both developers and software toolmakers to support monolithic standards, at some point the two frameworks should merge. “It’s now in our camp of OpenMP to bring it back together as one happy family,” says Mattson.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire