STARnet Alliance Seeks Revolution in Chip Design

By Tiffany Trader

January 23, 2013

The Defense Advanced Research Projects Agency (DARPA) and the Semiconductor Research Corporation (SRC) have launched a new consortium to advance the pace of semiconductor innovation in the US as the technology approaches the limits of miniaturization.

The main thrust of the project is the creation of the Semiconductor Technology Advanced Research Network, aka STARnet, a network of six Semiconductor Technology Advanced Research centers, tasked with providing “long-term breakthrough research that results in paradigm shifts and multiple technology options.”

At each of the six STARnet university hubs – University of Illinois at Urbana-Champaign, University of Michigan, University of Minnesota, Notre Dame, University of California at Los Angeles and University of California at Berkeley – researchers will pursue CMOS-and-beyond technologies with an emphasis on design, software, system-level verification, and validation. By assessing and eliminating technological barriers identified by the International Technology Roadmap for Semiconductors (ITRS) and engaging in pre-competitive exploratory research, the teams will help secure the continued success of the nation’s microelectronics and defense industries.

DARPA and contributing companies have allocated $194 million in joint funding. Although the specific dollar amount varies according to their individual contracts, each STARnet center will receive more than $6 million annually for up to five years. The project is administered by Microelectronics Advanced Research Corporation (MARCO), a subsidiary of SRC.

The multi-disciplinary, collaborative effort draws upon the expertise of 148 faculty researchers and 400 graduate students from 39 universities. In addition to DARPA and SRC, members include the U.S. Air Force Research Laboratory, the Semiconductor Industry Association (SIA), and eight industry partners: Applied Materials, GLOBALFOUNDRIES, IBM, Intel Corporation, Micron Technology, Raytheon, Texas Instruments and United Technologies.

The semiconductor industry, a $144 billion market in the US, has so far benefited from a seemingly endless cycle of transistor shrinks, but Moore’s Law is waning. While researchers will likely find a way to squeeze silicon for another decade or so, there are undeniable physical limitations associated with the nanoscale frontier.

“The dimensions of the transistors of today are in the tens of atoms,” explains Todd Austin, professor of electrical engineering and computer science and C-FAR director. “We can still make them smaller, but not without challenges that threaten the progress of the computing industry.”

With microelectronics so tied to the nation’s security and economy, it’s imperative that these challenges are addressed. In the words of SRC Executive Director Gilroy Vandentop, “STARnet is a collaborative network of stellar research centers finding paths around the fundamental physical limits that threaten the long term growth of the microelectronics industry.”

A breakdown of the six multi-university teams and their primary areas of research:

  • The Center for Future Architectures Research (C-FAR), led by the University of Michigan, is focused on computer systems architectures for the 2020-2030 timeframe. They anticipate that application-driven architectures that can leverage emerging circuit fabrics will be key to extending the life of CMOS technology. Participating universities include Columbia, Duke, Georgia Tech, Harvard, MIT, Northeastern, Stanford, UC Berkeley, UCLA, UC San Diego, Illinois, Washington and Virginia.
  • The Center for Spintronic Materials, Interfaces and Novel Architectures (C-SPIN), led by the University of Minnesota, looks to electron spin-based memory and computation for its potential in overcoming challenges associated with traditional CMOS devices. Participating universities include UC Riverside, Cornell, Purdue, Carnegie Mellon, Alabama, Iowa, Johns Hopkins, MIT, Penn State, UC Santa Barbara, Michigan, Nebraska and Wisconsin.
  • The Center for Function Accelerated nanoMaterial Engineering (FAME), led by the University of California, Los Angeles, is studying nonconventional materials, including nanostructures with quantum-level properties. The research seeks to support analog, logic and memory devices for “beyond-binary computation.” Participating universities include Columbia, Cornell, UC Berkeley, MIT, UC Santa Barbara, Stanford, UC Irvine, Purdue, Rice, UC Riverside, North Carolina State, Caltech, Penn, West Virginia and Yale.
  • The Center for Low Energy Systems Technology (LEAST), led by the University of Notre Dame, will investigate new materials and devices for their potential to enable low-power electronics.Participating universities include Carnegie Mellon, Georgia Tech, Penn State, Purdue, UC Berkeley, UC San Diego, UC Santa Barbara, UT Austin and UT Dallas.
  • The Center for Systems on Nanoscale Information Fabrics (SONIC), led by the University of Illinois at Urbana-Champaign, is exploring the benefits of a transitioning from a deterministic to a statistical model. Participating universities include UC Berkeley, Stanford, UC Santa Barbara, UC San Diego, Michigan, Princeton and Carnegie Mellon.
  • The TerraSwarm Research Center (TerraSwarm), hosted by the University of California, Berkeley, seeks to develop city-scale capabilities using distributed applications on shared swarm platforms. Participating universities include Michigan, Washington, UT Dallas, Illinois at Urbana-Champaign, Penn, Caltech, Carnegie Mellon and UC San Diego.

“Each of these six centers is composed of several university teams jointly working toward a single goal: knocking down the barriers that limit the future of electronics,” comments DARPA program manager Jeffrey Rogers.

“With such an ambitious task, we have implemented a nonstandard approach. Instead of several different universities competing against each other for a single contract, we now have large teams working collaboratively, each contributing their own piece toward a large end goal.”

The project founders believe that long-term research is necessary to bolster semiconductor innovation and ensure the future of US military and industry competitiveness. They state that while short-term programs are suitable for sustaining an evolutionary pace, longer-term efforts are necessary to spur revolutionary advances, especially in light of impending technology constraints.

“STARnet will perform longer-term, more broad-based research, with the goal of expanding the knowledge base of the semiconductor industry, [and] researchers at STARnet centers willgenerate ideas for technology solutions,” notes the program literature.

Industry partners gain access to bleeding-edge research subsidized through Department of Defense funding. And while SRC estimates that STARnet research technology likely won’t be commercially viable for at least another 10-15 years, members will be able to sub-license the resulting IP.

STARnet continues the work of the Focus Center Research Program (FCRP), a similar program that has been in place since 1997 but is set to conclude on Jan. 31, 2013.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire