What Will the Sequester Mean to HPC (and Federal) Research?

By Richard L. Brandt

March 20, 2013

On Friday, March 15, President Obama gave a speech at DOE’s Argonne National Laboratory, and light-heartedly expressed his concerns about the effects of sequestration on budgets at the country’s national laboratories.

Noting that some of the employees were standing in the crowded auditorium, he quipped, “I thought [that at] Argonne, one of the effects of the sequester [was that] you had to get rid of chairs!”

People laughed. Outside of that speech, however, nobody in a federal lab is chuckling over the possible impact of sequestration. Prominent heads of national labs, university researchers and technology executives are very concerned about how budget stalemates between the White House and Congress will affect government-funded research across the country.

Sequestration, because it demands cuts in government spending almost across the board, has brought the issue directly to the datacenter. If left in place, it will put federally funded R&D this year at a level $12.5 billion less than the amount spent in 2011 – an 8.7% decrease. Several organizations have already instituted budget cuts to prepare for the decrease in funding. The National Institutes of Health has said it is cutting grant levels by 10 percent and will offer fewer grants. The National Science Foundation says it will eliminate 1,000 grants this year.

Moreover, sequestration has sparked an op-ed debate over the value of government-funded research itself. It’s a debate that could extend well beyond the current stalemate.

Locating the speech at Argonne and putting energy research on the table was itself a strategic move to highlight the importance of funding national labs. President Obama also tried to offer new funding in a palatable way. He did not call for additional taxes or even preventing future cuts, but suggested using a non-tax form of revenue to fund energy research. The approach would take $2 billion over the next 10 years from leases paid by energy companies that develop fossil fuel resources on federal land. That money would fund a very specific type of research: developing electric vehicles, homegrown biofuels, and domestically produced natural gas.

But that still leaves the longer-term question open. Is it a good idea to use tax revenue to fund research that may or may not have future benefits to the country? The heads of government organizations, national labs, universities and other supporters of technology are now defending the concept in hearings and in editorial pages across the country.

William Brinkman, director of the Office of Science at DOE, testified before a House Appropriations Subcommittee on Energy and Water Development on March 5. He said that sequestration would cut this year’s budget for the Office of Science by $215 million from 2012, something the country cannot afford at a time when “other countries around the world are challenging our scientific leadership in essentially all the scientific disciplines that we steward.” HPC research is a big part of that. “Since the inception of high-performance computing, the United States has been a world leader in this field,” Brinkman continued.

But that may no longer be the case. Budget cuts will affect research intended to “accelerate the next generation of supercomputers at a time when international competition in this domain is growing,” he said.

In fact, the US is not the clear leader it once was. In 2011, a 700,000-core Fujitsu K computer installed at the RIKEN Advanced Institute for Computational Science (AISC) hit the summit of the TOP500 list. It dropped to third position on the November 2012 list because of competition from newer machines, but 31 of the 50 most powerful computers on that list are based outside the US. Throughout the world, countries such as China, Japan, the UK, Germany, India and most recently Switzerland are touting the competitive benefits of new supercomputers.

China has joined the competition to become the first country with an exascale computer, as has a European consortium, the Partnership for Advanced Computing in Europe (PRACE). The Indian Institute of Technology Delhi (IIT Delhi) is partnering with NVIDIA to create a research lab to try to reach exascale computing in India by 2017.

Next >>

Brinkman also argues that federally-funded HPC research is an enormous boon to industry at home. “Growth in computing performance has the potential to advance multiple sectors of our economy, including science, manufacturing, and national defense,” he testified before Congress. As one example, he pointed out that corporations are conducting 15 projects in the Industrial High Performance Computing Partnerships Program at Oak Ridge National Laboratory (ORNL).

Others have also become very vocal in defending federal R&D in general as a boon to the economy. The Washington think tank ITIF estimates that projected cuts in R&D will reduce the GDP by between $203 billion and $860 billion over the next nine years. It also says that sequestration will put the US “$511 billion behind in R&D investment when compared to expected Chinese R&D expenditure growth rates.”

In an editorial in The Atlantic, National Lab Directors Paul Alivisatos (Lawrence Berkeley National Laboratory), Eric D. Isaacs (Argonne) and Thom Mason (ORNL) write that the impact of sequestration “will be felt years – or even decades – in the future, when the nation begins to feel the loss of important new scientific ideas that now will not be explored, and of brilliant young scientists who now will take their talents overseas or perhaps even abandon research entirely.” Federal R&D spending amounts to less than one percent of the federal budget, they argue, and cuts will result in “gaps in the innovation pipeline [that] could cost billions of dollars and hurt the national economy for decades to come.”

In an editorial in The Financial Times, MIT president Rafael Reif and former Intel CEO Craig Barrett argue that “scientific discovery improves life and creates wealth like nothing else. But that notion has essentially been on trial in the US for decades.” They point out that the commerce department has estimated that since WWII, 75 percent of postwar growth came from technological innovation.

Some people, however, dispute those numbers. Roger Pielke a professor of environmental studies at the Center for Science and Technology Policy Research at the University of Colorado at Boulder, has become something of a de-facto spokesman to counter the economic arguments. He is also a Senior Fellow at The Breakthrough Institute, which he describes as a “progressive think tank.” He argues that the numbers claiming economic growth from R&D are bogus. “It would be remarkable if true,” he writes at the organization’s website. “Unfortunately, it is not.” He says that there is no statistical basis for the claims. He also says that early proponents of the theories that economic growth is sparked by “creative destruction” in the economy (Joseph Schumpeter) or “technical change” (Robert Solow), which led to the arguments of the economic impact of R&D, have been misunderstood.

Many fiscal conservatives in Congress are likely to agree. The result so far is that the debate continues and budget cuts may still slice into funding of HPC centers, federal labs, and federal R&D in general. It’s an impact that may be felt for years to come.

Related Articles:

Supercomputing Challenges and Predictions

Presidential Supercomputing

Debt Deal Casts Shadow on US Research Funding

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire