Moonshot Highlights HPC’s Longshot

By Nicole Hemsoth

April 11, 2013

For those who followed the news this week about HP’s Moonshot Project, which is their super-compact server pitch for “hyperscale datacenters”, the idea of plugging this into some high performance computing context likely wasn’t first in the thought-queue. However, according to some at the edge of low power computing, including Calexda’s Karl Freund, “the potential says something about the future.”

Without some background, that quote might sound rather vague until one thinks about all the speculation that’s been pumped into ARM-based and low-power x86 architectures. The attention around this has increased now that we’re looking at a 64-bit and double-precision-ready reality around the bend within the next couple of years.

While Moonshot might be wooing the mobile and hosting camp, there is something more compelling here for HPC–at least in the coming years. This concept presents high-density, low-power servers with the ability to swap in accelerators, DSPs, GPUs, FPGAs to create an efficient heterogeneous platform that is tailored around specific workloads.

Add to that an integrated cluster fabric and embedded low latency switches and this should strike the HPC crowd as a “blade on steroids” where storage and other workload-specific needs can (eventually) be snapped in. Again, it’s still down the road for the needs of high performance computing, but we did explore the possibilities with a few folks this week.

During a conversation about how HP and others who take this type of swing at big datacenters might be able to strong-ARM their way through the gilded HPC gates, Freund cited some heavy-hitters taking an honest shine to lightweight approaches. He rattled off a long list of national labs, from Sandia to Los Alamos, Argonne, Oak Ridge, and others who are actively exploring the potential of ARM and how it might help them tackle exascale-class problems efficiently. He was referring to his company’s own ARM-based cartridges, which HP will offer as an option (although they were a first choice during the initial phases of Moonshot) to the core Intel Atom S1200 “Centerton” in addition to other offerings from ARM vendors.

While the labs might be turning a theoretical eye to the low power field, at this point it’s more on the level of playing with a few boxes to get a sense of scale and capability. So far, they (and some in the life sciences and oil and gas industries who aren’t concerned with striking double-precision gold) are pleased, but there is still a great deal of development to be done, including the (likely late) 2014 release of 64-bit ARM and then the critical tooling required to make it all function.

But it’s not all a power/efficiency play for the labs and those thinking about new server approaches, says Freund—it’s just as much a matter of flexibility and being able to build out boxes based on specific elements that are wrapped around specific workload needs. The labs and others at such scale have been “told by Intel that you get what everyone else gets” unless you’re willing to fork over a bunch of bucks to have them cobble together a specialized chip. This just isn’t the way systems are going to be built if we look ahead, Freund argues.

What HP showed off this week in the form of the very hopeful-sounding “Project Moonshot” is a glimpse into that application-centric future. Is any of it ready for HPC primetime? Of course not—in fact, in their current form sporting Intel Atom processors, they’re really only good for cloud datacenters munching pretty common tasks in an efficient but unimpressive (performance-wise) way. But there is a little twinkling there that’s bright enough to lull the forward-looking on the supercomputing side.

That sparkle is in flexibility, Freund argues—it’s a glimmer that is hard for the labs to ignore. And when the light hits Moonshot just right, this crew is seeing the promise of stitching all sorts of pretties to the naked boxes; from GPUs on the same die, to FPGAs finding their way in, to 60 gigabit fabric switches, sprinklings of DSPs (ala Texas Instruments) and additional offload engines, at least from Freund’s vantage point.

As HP noted when they slung out Moonshot this week, “There is a solid return for investing in finding an optimal balance of density, costs and expenses for each workload class. Given the rapid rate of workload and application evolution, finding optimal performance pints will be a continuous process for at least the next few years; it demands flexible hardware and software infrastructure.”

One could argue even further that Freund’s simple statement about possibility is far deeper than anything else he could have said in more words. And the synergies don’t end there, nor do they really even begin with HP for that matter either.

What HP has done is thrown out a holistic view of how the future could, when ideally imagined, work, for the big boys of HPC and the enterprise peasants alike. Even if for now the messaging is trumpeted to the cloud datacenters serving up vanilla apps, this unified vision resonates. They plan on “enabling a variety of partner silicon and component vendors to accelerate hypersale workloads for customers. This includes the lowest power CPUs and adds to it APUs, GPUs, DSPs, and FPGAs at scales those vendors would not be able to access on their own.” This is music to vendor ears, but on the receiving end, they note that “HP’s customers will benefit via broader access to innovative accelerators at a faster pace than HP achieve on its own.” They note (quite humbly despite the grandiosity of the project name) that their “success in bootstrapping and sustaining their Pathfinder Innovation Ecosystem will determine their future in the hyperscale infrastructure market.”

He imagines that at ISC in Leipzig and other shows with an HPC-heavy cast, HP will try to shine its Moonshot diamond in such a way that there’s a visible “big data” glint. The issue here is, HPC in this case isn’t really the same thing as big data as it fits in the Moonshot box. One of the biggest weaknesses of an architecture like the one they’ve crammed into the teensy space is that it rather sucks at floating point performance. And that’s kind of, well, you know , like really, really important. Still, for the I/O and integer-intensive stuff, which also has a place in the hallowed halls of HPC, there is a story angle. Again, that tale will have to play out following some maturing post 64-bit release.

Even after that release and the addition of double-precision capability, there’s something of a chicken and egg problem. Since no one is investing in the tools and software side until 64-bit double-precision emerges (no money, no develop-y), even the experiments at this early stage have their limits—and the development needed after the basics are in place will add even more time to the process. It will be slow going, but it could be all worth the wait if an efficient, flexible and fine-tuned server approach emerges that pulls the exascale dream a little closer.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire