Since 1986 - Covering the Fastest Computers in the World and the People Who Run Them

Language Flags
April 11, 2013

Rockhopper POD Cluster Beats Amazon

Tiffany Trader

The Rockhopper Penguin on Demand Cluster made its debut November 2011, a collaborative effort to deliver cluster computing as a service in a secure environment. Led by Penguin Computing and Indiana University, the project also included founding user-partners, the University of Virginia, the University of California Berkeley, and the University of Michigan. The cluster has been in production for over a year now, long enough for additional details to emerge on this interesting HPC cloud use case.

Presumably named after a rad-looking species of Penguin, Rockhopper is a bonafide HPC cluster, meaning it is not virtualized. The architecture consists of 11 Penguin Computing Altus 1804 servers each with four 12-core AMD Opteron 6172 processors and 128 GB RAM. The system is located in Indiana University’s Data Center facility, and managed by Penguin on Demand.

As explained in a presentation delivered at the International Plant and Animal Genome Conference in San Diego earlier this year by IU’s Barbara Hallock, Rockhopper’s services are provided by both the National Center for Genome Analysis Support and the partnership between Indiana University and Penguin Computing. Users benefit from the availability of on-demand cycles on a real HPC cluster at a lower price point than less-performant virtualized offerings, such as Amazon’s EC2 cloud.

Penguin lists the fees as follows:

Core Hour $0.09 per core hour
On-Demand Storage $0.10 per average GB-month (monitored daily)
Data Transfer from Disk $20 per transfer

In case you’re wondering where to sign up, you should know that the cluster is only available to researchers at US institutions of higher education (with .edu domain names) or Federally Funded Research and Development Centers (FFRDCs).

Rockhopper was conceived with two main purposes in mind. One, as resource for XSEDE-allocated projects that had used up their award but still required additional computational work, and two, as a launchpad for projects that could potentially scale up to XSEDE in the future. For these reasons, Rockhopper was designed with an “XSEDE-standardized interface” to enable researchers to spend less time on compute and more time engaged in core science tasks.

The system supports a wide assortment of applications including mesoscale atmospheric prediction, genomics, quantum chemistry, and molecular dynamics. Specific applications, by package name, include COAMPS, GAMESS, Galaxy, GROMACS, HMMER, NAMD, OpenFoam, OpenMPI, WRF, and many more, as well as developer tools from Intel and the Portland Group.

Additional details about Rockhopper and on other POD offerings can be accessed in this presentation from SC12.

SC14 Virtual Booth Tours

AMD SC14 video AMD Virtual Booth Tour @ SC14
Click to Play Video
Cray SC14 video Cray Virtual Booth Tour @ SC14
Click to Play Video
Datasite SC14 video DataSite and RedLine @ SC14
Click to Play Video
HP SC14 video HP Virtual Booth Tour @ SC14
Click to Play Video
IBM DCS3860 and Elastic Storage @ SC14 video IBM DCS3860 and Elastic Storage @ SC14
Click to Play Video
IBM Flash Storage
@ SC14 video IBM Flash Storage @ SC14  
Click to Play Video
IBM Platform @ SC14 video IBM Platform @ SC14
Click to Play Video
IBM Power Big Data SC14 video IBM Power Big Data @ SC14
Click to Play Video
Intel SC14 video Intel Virtual Booth Tour @ SC14
Click to Play Video
Lenovo SC14 video Lenovo Virtual Booth Tour @ SC14
Click to Play Video
Mellanox SC14 video Mellanox Virtual Booth Tour @ SC14
Click to Play Video
Panasas SC14 video Panasas Virtual Booth Tour @ SC14
Click to Play Video
Quanta SC14 video Quanta Virtual Booth Tour @ SC14
Click to Play Video
Seagate SC14 video Seagate Virtual Booth Tour @ SC14
Click to Play Video
Supermicro SC14 video Supermicro Virtual Booth Tour @ SC14
Click to Play Video