Adapteva Shows Off $99 Supercomputer Boards

By Tiffany Trader

April 23, 2013

Last week, Adapteva revealed the first production units of its $99 Linux “supercomputer.” Speaking at the Linux Collaboration Summit in San Francisco, California, CEO Andreas Olofsson announced the first batch of Parallella final form factor boards will be shipped to the chipmaker’s 6,300 Kickstarter supporters by this summer.

Inspired by Raspberry Pi’s success, Adapteva created Parallella to be “affordable, open, and easy to use” with the intent of democratizing parallel computing. The platform launched last fall with 5,000 backers purchasing 6,300 boards in four weeks via Kickstarter. Since Jan. 1, another 5,000 signed up to reserve their boards. Adapteva has spent the last six months working to deliver on its promise.

With less than five minutes to go in his 21-minute talk, Olofsson made the big reveal. The company had just received its very first boards, said the CEO, reaching inside his suit jacket to pull out both 16-core and a 64-core versions. The engineering team had to make a few tweaks with a soldering iron, but they were able to successfully run applications and read and write to the coprocessor.

“The hardware is looking great,” says the CEO. “Six months ago when we started this project, we said, we think we can put all this stuff on a credit card and we know it should cost a hundred dollars, but we don’t know if we can do it or not. It was six months of not knowing if we can really deliver on this project. We were confident, but not 100 percent – and just seeing it working, and coming very close on price point as well, it’s a good feeling.”

The credit card sized parallel computer consists of a dual-core ARM A9 processor, 1GB RAM, and either a 16-core or 64-core Epiphany Accelerator Chip. It’s outfitted with two USB 2.0 ports, Gigabit Ethernet, an SD Connector and a Micro HDMI connector. The Epiphany development toolkit is included at no extra charge.

Developed by Adapteva over the last four years, the Epiphany chips employ a scalable array of RISC processors that are programmable in C/C++. They are connected together with a fast on chip network within a single shared memory architecture.

The Parallella computer runs Ubuntu Linux. The 66-core version of the Parallella computer (that’s two A9 ARM cores + 64 RISC processors) is expected to deliver 90 gigaflops (comparable to a theoretical 45GHz CPU) while consuming about 5 watts under typical workloads.

Next >> The Parallel Future

In a video on Adapteva’s website, Olofsson further details the impetus for the project: “People have been doing single-threaded performance, having one processor running one task at at time and that’s worked great, but then we hit a frequency wall, and then we hit a memory bottleneck and things just stopped. So what we see for the last year is that performance hasn’t improved as much as it should.

“We’re now stalling and if we don’t do anything about it all those great strides we made over the last 30 years where things would get better every single year, they’re going to stop, and the answer is parallel performance performance. It’s the only way to really scale in terms of energy-efficiency, performance and cost.”

“Despite being so small, we managed to tape out a 64-core, 28-nanometer chip that works, and burns 2 watts at 100 gigaflops, making us the most efficient microprocessor company in the world,” noted the CEO in his talk last week. Even with these impressive claims, it took some time for the company to attract serious interest, but micro-financing via Kickstarter and the growing demand for energy-efficient systems have altered the playing field.

“The practical vision for today is heterogenous computing,” states Olofsson. “Let’s use the tools we have available today and let’s make a system that is more efficient than one thing can do. There’s no magical all-you-can-do tool. In our toolbox, we have big CPUs, x86, and ARM. With so much legacy in them, they’re not going away anytime soon.”

But there are other options, says the CEO, including FPGA logic, GPUs, analog, and asymmetric processing, where an ARM or x86 chip handles the bulk of application processing, while hundreds or even thousands of small RISC CPUs are set to one task such as floating point co-processing. This is where Parallella, with its heterogenous and scalable parallel hardware, fits in.

The future is undeniably parallel, Olofsson asserts, and meeting the challenges of this coming paradigm will require a concerted effort. He recommends a four-fold strategy, that includes rebuilding the computer ecosystem, rewriting billions of lines of code, re-educating millions of programmers, and rewriting the education system.

According to Olofsson, the only way to achieve these goals is to have a completely open approach, and that means open software and hardware. The platform should also be accessible, which means it needs to be inexpensive and easy to program.

As for Parallella’s killer app, early customer feedback indicates it’s all over the map. There’s interest in using the platform for software-defined radio, ray tracing/rendering, image processing, robotics, gaming, photography, media servers, signal processing as well as HPC. “It’s a computer you can use anywhere,” observes Olofsson.

Adapteva has a busy year ahead. In addition to filling the initial 6,300 orders, the company is also founding the Parallella Academic Program, building a sustainable supply model, and working toward massive parallelism with Parallella-1024. “We could put a thousand cores on a chip tomorrow, if someone wanted us to,” says Olofsson.

“The really good news is we have boards working…and we’re going to ship them this summer,” concludes the CEO.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire