Cray Answers Mid-Market’s Call

By Tiffany Trader

May 7, 2013

Earlier today Cray announced the XC30-AC (air-cooled) supercomputer, a pared-down version of its top-of-the-line XC30 system, aimed at the technical enterprise market space. The news was timed to coincide with the 2013 Cray User Group (CUG) meeting in Napa Valley, California.

The Cray XC30-AC Air-Cooled Supercomputer

Where the XC30-LC (liquid-cooled) product is targeted at Fortune 100 companies, the air-cooled version is intended for the rest of the Top 1000, notes Jay Gould, Cray’s senior product marketing, in an interview with HPCwire. These “mid-market” systems were previously designated as m-versions.

What’s different about the XC30 series, says Gould, “is we can scale up to massive machines like we always have, but now we can also configure down to more aggressively priced machines by customizing the packaging and introducing cost-savings. Previously, the -m was an attempt to size down the machine, people would talk about mid-range, and minis, etc.

“Technical enterprise is what we’re shooting at, and we don’t want anyone who coughs up $500 thousand to $3 million for a Cray to think that they got a diminutive mini version of something or a neutered version of a supercomputer.”

To Cray, “technical enterprise” encompasses pricing, performance and applications. The segment ranges roughly from $500,000 systems to $3 million systems. Above that line lies Cray’s high-end systems. The AC systems will initially extend from 20-200 teraflops, a window that will expand along with Moore’s Law-timed processor iterations.

The AC naming convention follows in the footsteps of Cray’s rebranded Appro systems, but Gould was clear that the AC system leverages all the technology innovation and investment of the XC30 series, optimized for the technical enterprise space.

“We’re economizing all this high-end innovation that we developed for our flagship line and finding ways to make it more aggressively priceable for smaller markets, smaller datacenters and a new class of users within the existing spaces that we already play,” he adds.

Built on the pillars of the XC30 architecture, the AC system uses the same processor technology, the same compute board, and the same processor daughter cards. It is this “Adaptive Supercomputing” strategy that Gould says allows Cray to turn on a new customer trend or industry movement or support new devices without having to redesign the architecture from scratch. Cray has already pre-announced its support for the Intel Phi and NVIDIA GPUs in XC30 and that IP will port straight to the air-cooled version as well. The I/O blades are the same, as is the HPC-optimized Aries interconnect, but the Dragonfly network technology holds an important distinction.

Dragonfly was designed with three ranks. The first rank combines blades within a single chassis via a backplane, while the second rank connects local chassis to each other via passive copper electrical cables. The third rank – a network built of active optical cables that provides row-to-row communication – is intended only for the most massive supercomputers. For smaller systems, like the XC30-AC, this very expensive technology is overkill.

“So while there is this difference in the network topology, it’s still the same architecture so everything is compatible going up. The same software, same software stack, same partners, same ISV vendors, and same middleware vendors are all in play. The Cray ecosystem remains in tact,” says Gould, “as does the Cray reliability, service and support.”

Next >> the Configuration

In addition to employing a less expensive network implementation, the Cray XC30-AC offering is distinguished by its economized packaging, cooling and power options. Each cabinet is self-sufficient: a single high-efficiency fan sucks air in from the bottom and blows it vertically through the cabinet and out the top. There’s no need for liquid coolants or plumbing infrastructure, which is what allows Cray to target new customer types. There’s also no requirement for raised floor datacenters, in fact these systems could even run on cement slabs in a garage.

What ultimately makes this configuration possible is that the cabinets are smaller and less densely populated. The flagship systems are stuffed with blades, as many as will fit, which necessitates a powerful cooling system. In this setup there are 16 vertical compute blades per cabinet, relying on a single fan for cooling. Because the cabinets are self-sufficient, up to eight cabinets can be joined without the need for additional cooling support. To accommodate smaller datacenters or server rooms, the XC30-AC offers a lower-power 208-volt option in addition to the 480-volt standard.

Cray designed the AC version to meet the needs of a new classes of users. There’s a big move to leverage modeling and simulation across multiple verticals. In manufacturing, energy, finance and the pharmaceutical industry, businesses are looking to transition from physical to virtual prototyping to improve ROI and boost time to market. Whether it’s designing the perfect golf club head or developing the world’s most sophisticated turbines, users want to be able to simulate those things from the bottom up rather than building multiple prototypes and dealing with lengthy development cycles.

Cray guides new customers through the selection process by sifting through all of their requirements to understand their application requirements and use model.

“Sometimes they just know at a high level what they’re shooting for,” says Gould. “In other cases, they’ve got a really specific request for information or request for bid where they itemize everything because they’ve done this a lot.

“Some of the new classes of users that we’re talking about haven’t necessarily used high-performance computing before so they don’t even know all of the questions to ask when learning about a system. So when we go through the engagement, we find out whether they have a cement slab floor in their computer room or a raised floor with air flow everywhere, whether they have liquid plumbing or not, so we can guide them based on their performance requirements and their budget to the right solution for their application.”

Not every organization can operate a hundred million or three hundred million or billion dollar datacenter, says Gould. “Some of these new customers don’t even call it a datacenter. They may call it a computer room, computer lab, or server room.”

Additionally, not every computing requirement can be addressed with a cluster. Clusters are a nice fit for capacity type applications, a use case that Cray affirmed when it acquired Appro. But as Gould points out, the supercomputing vendor is seeing new demands from existing customers and from interested prospects that can only be addressed by a capability-optimized computing platform.

Next >> Compatibility

The scaled-down XC-30 should appeal to customers who get time on large Cray machines at national labs. While the advantages of leadership-class systems like Titan or Blue Waters are undeniable, the allocation process has the downside of long wait times and other constraints. The AC racks will allow customers to own their own machine and be 100 percent in control of their schedule and time to market, and they can still utilize the big machines for larger-scale workloads.

Gould stresses that there is complete compatibility from two to 200 cabinets and beyond, ultimately using the same software, the same IP, and same kind of networking.

“It’s going to be a compatible migration, not starting from scratch and porting your applications all over again,” he notes.

This level of compatibility was no accident, as Gould explains:

“We went into this whole portfolio over the last several years open-minded, knowing that we wanted to do a high-end version and a more frugal technical-enterprise version,” he says. “Instead of building the world’s biggest, fastest supercomputer and then trying to figure out how to cut it into pieces, we built it from the ground-up so we could configure single cabinets with air-cooling all the way up to the world’s biggest machines – 480-some-odd cabinets – and be able to be flexible enough to change the networking for the bigger machines and scale down the networking for the smaller machines. That took a lot of time and investment and that was one of the biggest challenges: ‘how do you use one technology for everything?’ and I think we hit this very well.”

The product line is available now and is already shipping. Early customers include a global consumer electronics company and a global financial services company, highlighting the move to non-traditional HPC segments. Cray wants to do its part to ensure that innovation is not limited to the top 100 companies. There is a lot of room for growth and there are many Fortune 1000 companies with an emerging need for a class of supercomputers that fits within their datacenters and their budgets.

“In the macro view,” says Gould. “HPC [spending] is still going up, and the region we are targeting – the half-million to three million dollar price-point – is actually a growth area, not regressing or shrinking, and this is part of our strategic plan to continue to target the right applications and the right integrated systems for those markets.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire