Supercomputing Vet Champions Quantum Cause

By Nicole Hemsoth

May 13, 2013

Update: D-Wave system coming from Google and NASA … Read More

Supercomputing veteran Bo Ewald has been neck-deep in bleeding edge system development since his twelve-year stint at Cray Research back in the mid-1980s, which was followed by his tenure at large organizations like SGI and startups, including Scale Eight Corporation and Linux Networx.

As we reported earlier this month, Ewald is stepping into yet another new role, this time at the helm of the first quantum computing company, D-Wave Systems. During our recent conversation, Ewald confirmed his belief that quantum computers will be at the heart of a new wave of computing—at least for a certain set of specific optimization, machine learning and pattern recognition problems.

“This is the early days, almost like when the first Cray 1 or Thinking Machines systems came out,” Ewald reminisced. The same skepticism, scientific and business practicality questions, and the same promise exists, he argues.

D-Wave has been in development for 14 years, and has finally arrived at a commercialization opportunity to pitch from its new office in Palo Alto. With a recognizable name like Ewald front and center, it’s clear the company sees opportunities outside of its one public customer, Lockheed Martin. Ewald said he researched heavily to validate the commercial viability and will lead D-Wave’s charge into defense and intelligence, research, and other potential markets. The catch, of course, is that organizations need to have a spare $10 million or more and the right physics and math pros to tap into the programmatic possibilities.

Like the historical systems mentioned above, the company’s flagship system, the D-Wave One, was greeted with equal parts intense skepticism and excitement. With some highly publicized demos and a customer case under their belt, D-Wave thinks it can find a solid market for its 128-qubit processor-based technology, which comes wrapped in its own cryogenic and quantum-balanced unit pictured left.

The company will face a lengthy battle against perception that these quantum computers are fringe or merely experimental. However, some researchers, including Dr. Catherine McGeoch, Beitzel Professor in the Computer Science department at Amherst College, are validating performance claims. For a particular range of applications, quantum vastly outpaced conventional computing. And their work at the USC-Lockheed Martin Center for Quantum Computing continues to offer some serious credibility for, again, a certain class of optimization problems.

As with all early-stage innovations in computer science, there is a major programming and software ecosystem gap. Ewald says this is really no different than what happened with GPUs. He argues that if one thinks about the code and partitioning problems that were present with those accelerators before the software tooling was there in spades, the same story will play out. At this point, mathematicians and physicists can construct their problems numerically using the handful of tools at their disposal and then map them onto the quantum machine.

“We’re on the edge of something revolutionary,” he explained. “This is far different than traditional scientific computing and high performance computing, which is numerically intensive—it’s about crunching a lot of numbers.”

For a range of optimization problems, however, where calculating using the standard set of ones and zeros results in incredibly slow and complex equations, quantum computing relies on “mapping an optimization problem onto the quantum computer so it can instantaneously, once it reaches the quantum state, give you a better solution than the one you started with. With multiple iterations, it will arrive at the best possible answer.”

To put optimization problems into a “normal” context, imagine the following, very common scenario. There is a massive snowstorm in Chicago, which has caused grounding of an unprecedented number of flights. Airlines need to be able to quickly figure out the very best possible solution to moving planes and crews around to adapt. A few iterations on the D-Wave One, says Ewald, and there it is.

Sounds almost too good to be true. Well, there are some catches—the simplest to see is the mere complexity of the quantum process. Further, there’s the programming for these select optimization, machine learning, and pattern recognition problems.

Take a look at the photo on the left to see the inner workings of one D-Wave’s deep freeze boxes. Outside of using atoms rather than bits to solve some of the most perplexing problems in computer science, there are other elements that make D-Wave’s technology noteworthy. While Ewald couldn’t discuss details, he said the real challenge that all the years of R&D have been tackling lies in getting the qubits—the quantum bits—to engage in a way where they become entangled. At this point, the system will move to a lower energy state but there are tough hurdles to create those conditions.

The qubits need to exist at near absolute zero in terms of temperature, vibration and magnetism must be eliminated, and it must operate in a perfect vacuum. That’s a tall order, but Ewald said that the science is there and the applications are real. D-Wave has managed to create this environment to the point where they can get up to 500 qubits into a quantum state.

But theory aside, who will be installing a multi-million dollar ($10 million and up) D-Wave One in the next few years, especially at a time of crunched budgets?  Perhaps the best advertising mechanism the company has lies in its work with Lockheed Martin.  While they haven’t been overt about what problems they’re using their D-Wave setup for, the USC-Lockheed Martin Center for Quantum Computing has been very vocal about their belief in the future of quantum computing.

Lockheed took care to stress the importance of optimization problem solving–finding the best possible answer in a sea of possible answers–which means that’s where their interests likely lie. Government, intelligence and industrial uses remains unclear, but Ewald says that new uses and use cases for these systems will emerge in all areas typically reserved for HPC, including financial services, oil and gas, life sciences–the usual suspects.

“This type of computer is not intended for surfing the internet, but it does solve this narrow but important type of problem really, really fast,” said Dr. Catherine McGeoch. “There are degrees of what it can do. If you want it to solve the exact problem it’s built to solve, at the problem sizes I tested, it’s thousands of times faster than anything I’m aware of. If you want it to solve more general problems of that size, I would say it competes – it does as well as some of the best things I’ve looked at. At this point it’s merely above average but shows a promising scaling trajectory.”

For now, D-Wave stands alone in an emerging market, in much the same way Cray was the monolith at the beginning of the era it kicked off. Ewald is in the unique position of having been at the forefront of one disruptive event in technology, while rounding out his long career leading another such transition.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire