CometCloud: Using a Federated HPC-Cloud to Understand Fluid Flow in Microchannels

By Javier Diaz-Montes, Manish Parashar, Ivan Rodero, Jaroslaw Zola, Baskar Ganapathysubramanian, Yu Xie

May 22, 2013

The ever-growing complexity of scientific and engineering problems continues to pose new computational challenges. While many of these problems are conveniently parallel, their collective complexity exceeds computational time and throughput that average user can obtain from a single center.

Thus, we present a novel federation model that enables end-users with the ability to aggregate heterogeneous resource scale problems. The feasibility of this federation model has been proven, in the context of the UberCloud HPC Experiment, by gathering the most comprehensive information to date on the effects of pillars on microfluid channel flow.

This experiment has been performed by a joint team of researchers from the Rutgers Discovery Informatics Institute – RDI2 (Javier Diaz-Montes, Manish Parashar, Ivan Rodero, Jaroslaw Zola) and the Computational Physics and Mechanics Laboratory at Iowa State University (Baskar Ganapathysubramanian, Yu Xie).

The ability to control fluid streams at microscale is of great importance in many domains such as biological processing, guiding chemical reactions, and creating structured materials. Recently, it has been discovered that placing pillars of different dimensions, and at different offsets, allows fluid transformations to “sculpt” fluid streams (see Figure 1). As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, it is possible to sequentially arrange pillars to obtain complex fluid structures. To better understand this technique, the team from Iowa State University has developed a parallel MPI-based Navier-Stokes equation solver, which can be used to simulate flows in a microchannel with an embedded pillar obstacle. The search space consists of tens of thousands of points, where an individual simulation may take hundreds of core-hours and between 64 and 512GB of memory. In particular, in this experiment the team determined that to interrogate the parameter space at the satisfactory precision level 12,400 simulations (tasks) would be required.

Figure 1: Example flow in a microchannel with a pillar. Four variables characterize the simulation: channel height, pillar location, pillar diameter, and Reynolds number.

The computational requirements of the problem suggest that solving this problem using standard computational resources is practically infeasible. For example, the experiment would require approximately 1.5 million core-hours if executed on the Stampede cluster – one of the most powerful machines within XSEDE. However, the high utilization of the system and its typical queue waiting times make it virtually impossible to execute such an experiment within an acceptable timeframe. These constraints are not unique to one particular problem or system. Rather, they represent common obstacles that can limit the scale of problems that can be considered by an ordinary researcher on a single, even very powerful, system.

To overcome these limitations, the team from Rutgers University developed a novel federation framework, based on CometCloud, and aimed at empowering users with aggregated computational capabilities that are typically reserved for high-profile computational problems. The idea is to enable an average user to dynamically aggregate heterogeneous resources as services, much like how volunteer computing assembles cycles on desktops. The proposed federation model offers a unified view of resources, and exposes them using cloud-like abstractions, as illustrated Figure 2. At the same time the model remains user-centered, and can be used by any user without special privileges on the federated resources.

Figure 2: Multi-layer design of the proposed federation model. Here, the federation overlay dynamically interconnects resources; the service layer offer services such as associative object store or messaging; the programming abstractions offers APIs to easily create user applications; and the autonomic manager is a cross-layer component that based on user data and policies provisions appropriate resources.

 

In the UberCloud experiment, the MPI-based solver was integrated with the federation framework using the master/worker paradigm. In this scenario, the simulation software served as a computational engine, while CometCloud was responsible for orchestrating the execution of the workflow across the dynamically federated resources.

As part of the experiment, a single user federated 10 different resources provided by six institutions from three countries. The execution of the experiment lasted 16 days, consumed 2,897,390 core-hours, and generated 398GB of the output data. The overall experiment is summarized in Figure 3. As seen in this figure, even though the resources were heterogeneous and their availability changed over time, the sustained computational throughput was above 5 simulations completed per hour.

Figure 3: Summary of the experiment. Top: Utilization of different computational resources. Line thickness is proportional to the number of tasks being executed at given point of time. Gaps correspond to idle time, e.g. due to machine maintenance. Bottom: Dissection of throughput measured as the number of tasks completed per hour. Different colors represent component throughput of different machines.

 

The success of this experiment clearly demonstrates the capability, feasibility, and advantages of such a user-centered computational federation. In the experiment, a regular user was able to solve a large scale computational engineering problem, within just two weeks. More importantly, this result was achieved in a few simple steps executed completely in a user-space. The user was required to provide the kernels executed by the master and the workers, and gained access to a unified and fault-tolerant computational platform with cloud-like capabilities that was able to sustain the computational throughput required to solve the problem. This result is of great relevance if we consider the growing complexity of computational engineering problems, which very often outpace the increase in performance of individual HPC resources. More information can be found at http://nsfcac.rutgers.edu/CometCloud/uff/. To join the UberCloud HPC Experiment one can register at http://www.hpcexperiment.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire