CometCloud: Using a Federated HPC-Cloud to Understand Fluid Flow in Microchannels

By Javier Diaz-Montes, Manish Parashar, Ivan Rodero, Jaroslaw Zola, Baskar Ganapathysubramanian, Yu Xie

May 22, 2013

The ever-growing complexity of scientific and engineering problems continues to pose new computational challenges. While many of these problems are conveniently parallel, their collective complexity exceeds computational time and throughput that average user can obtain from a single center.

Thus, we present a novel federation model that enables end-users with the ability to aggregate heterogeneous resource scale problems. The feasibility of this federation model has been proven, in the context of the UberCloud HPC Experiment, by gathering the most comprehensive information to date on the effects of pillars on microfluid channel flow.

This experiment has been performed by a joint team of researchers from the Rutgers Discovery Informatics Institute – RDI2 (Javier Diaz-Montes, Manish Parashar, Ivan Rodero, Jaroslaw Zola) and the Computational Physics and Mechanics Laboratory at Iowa State University (Baskar Ganapathysubramanian, Yu Xie).

The ability to control fluid streams at microscale is of great importance in many domains such as biological processing, guiding chemical reactions, and creating structured materials. Recently, it has been discovered that placing pillars of different dimensions, and at different offsets, allows fluid transformations to “sculpt” fluid streams (see Figure 1). As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, it is possible to sequentially arrange pillars to obtain complex fluid structures. To better understand this technique, the team from Iowa State University has developed a parallel MPI-based Navier-Stokes equation solver, which can be used to simulate flows in a microchannel with an embedded pillar obstacle. The search space consists of tens of thousands of points, where an individual simulation may take hundreds of core-hours and between 64 and 512GB of memory. In particular, in this experiment the team determined that to interrogate the parameter space at the satisfactory precision level 12,400 simulations (tasks) would be required.

Figure 1: Example flow in a microchannel with a pillar. Four variables characterize the simulation: channel height, pillar location, pillar diameter, and Reynolds number.

The computational requirements of the problem suggest that solving this problem using standard computational resources is practically infeasible. For example, the experiment would require approximately 1.5 million core-hours if executed on the Stampede cluster – one of the most powerful machines within XSEDE. However, the high utilization of the system and its typical queue waiting times make it virtually impossible to execute such an experiment within an acceptable timeframe. These constraints are not unique to one particular problem or system. Rather, they represent common obstacles that can limit the scale of problems that can be considered by an ordinary researcher on a single, even very powerful, system.

To overcome these limitations, the team from Rutgers University developed a novel federation framework, based on CometCloud, and aimed at empowering users with aggregated computational capabilities that are typically reserved for high-profile computational problems. The idea is to enable an average user to dynamically aggregate heterogeneous resources as services, much like how volunteer computing assembles cycles on desktops. The proposed federation model offers a unified view of resources, and exposes them using cloud-like abstractions, as illustrated Figure 2. At the same time the model remains user-centered, and can be used by any user without special privileges on the federated resources.

Figure 2: Multi-layer design of the proposed federation model. Here, the federation overlay dynamically interconnects resources; the service layer offer services such as associative object store or messaging; the programming abstractions offers APIs to easily create user applications; and the autonomic manager is a cross-layer component that based on user data and policies provisions appropriate resources.

 

In the UberCloud experiment, the MPI-based solver was integrated with the federation framework using the master/worker paradigm. In this scenario, the simulation software served as a computational engine, while CometCloud was responsible for orchestrating the execution of the workflow across the dynamically federated resources.

As part of the experiment, a single user federated 10 different resources provided by six institutions from three countries. The execution of the experiment lasted 16 days, consumed 2,897,390 core-hours, and generated 398GB of the output data. The overall experiment is summarized in Figure 3. As seen in this figure, even though the resources were heterogeneous and their availability changed over time, the sustained computational throughput was above 5 simulations completed per hour.

Figure 3: Summary of the experiment. Top: Utilization of different computational resources. Line thickness is proportional to the number of tasks being executed at given point of time. Gaps correspond to idle time, e.g. due to machine maintenance. Bottom: Dissection of throughput measured as the number of tasks completed per hour. Different colors represent component throughput of different machines.

 

The success of this experiment clearly demonstrates the capability, feasibility, and advantages of such a user-centered computational federation. In the experiment, a regular user was able to solve a large scale computational engineering problem, within just two weeks. More importantly, this result was achieved in a few simple steps executed completely in a user-space. The user was required to provide the kernels executed by the master and the workers, and gained access to a unified and fault-tolerant computational platform with cloud-like capabilities that was able to sustain the computational throughput required to solve the problem. This result is of great relevance if we consider the growing complexity of computational engineering problems, which very often outpace the increase in performance of individual HPC resources. More information can be found at http://nsfcac.rutgers.edu/CometCloud/uff/. To join the UberCloud HPC Experiment one can register at http://www.hpcexperiment.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire