Full Details Uncovered on Chinese Top Supercomputer

By Nicole Hemsoth

June 2, 2013

At the end of May, an international group of high performance computing researchers gathered at the International HPC Forum in Changsha, China. One of the talks detailed the specs for the new Tianhe-2 system, which as we reported last week, is expected to rather dramatically top the Top500 list of the world’s fastest supercomputers.

China, supercomputer, Tianhe-2, Tianhe, Tianhe2
Artist’s rendering of the system as it will look once finally implemented at its final destination.

As noted previously, the system will be housed at the National Supercomputer Center in Guangzhou and has been aimed at providing an open platform for research and education and to provide a high performance computing service for southern China.

Dr. Jack Dongarra from the University of Tennessee and Oak Ridge National Lab, one of the founders of the Top500, was on hand for the event in China and shared a draft document that offers deep detail on the full scope of the Tianhe-2, which will, barring any completely unexpected surprises, far surpass the Cray-built Titan.

The 16,000-node Inspur-built Tianhe-2 is based on Ivy Bridge (32,000 sockets) and 48,000 Xeon Phi boards, meaning a total of 3,120,000 cores. Each of the nodes sports 2 Ivy Bridge sockets and 3 Phi boards.

According to Dongarra, there are some new and notable LINPACK results:

I was sent results showing a run of HPL benchmark using 14,336 nodes, that run was made using 50 GB of the memory of each node and achieved 30.65 petaflops out of a theoretical peak of 49.19 petaflops, or an efficiency of 62.3% of theoretical peak performance taking a little over 5 hours to complete.The fastest result shown was using 90% of the machine. They are expecting to make improvements and increase the number of nodes used in the test.

This certainly seems to confirm that this will indeed be the top system on this June’s list. But let’s take a closer look at some architectural elements to put those numbers in context…

Interestingly, each of the Phi boards have 57 cores instead of 61. This is because they were early in the production cycle at the time and yield was an issue. Still each of the 57 cores can boast 4 threads of execution and each thread can hit 4 flops per cycle. By Dongarra’s estimate, the 1.1 GHz cycle time produces a theoretical peak of 1.003 teraflops for each Phi element.

Each of the nodes is laden with 64 GB of memory, each of the Phi elements come with 8 GB of memory for a total of 88 GB of memory per node for a total of full system memory at 1.404 petabytes. There is not a lot of detail about the storage infrastructure, but there is a global shared parallel storage system sporting 12.4 petabytes.

According to Dongarra, there are “2 nodes per board, 16 boards per frame, 4 frames per rack, and 125 racks make up the system.” He says that the compute board has two compute nodes and is composed of two halves—the CPM and APM. The CPM portion of the board contains the 4 Ivy Bridge processors, memory and 1 Xeon Phi board while the CPM half contains the 5 Xeon Phi boards.

compute, node, xeon, tianhe-2, tianhe2, china, supercomputer

There are also 5 horizontal blind push-pull connections on the edge; connections from the Ivy Bridges to each of the coprocessors are made via PCI-E 2, which has 16 lanes and are 10 Gbps each. Dongarra points out that the actual design and implementation of the board is for PCI-E 3.0 but the Phi only supports PCI0E 2. There is also a PCI-E connection to the NIC.

We already knew that this was a system from the Chinese IT company, Inspur. According to Dongarra, “Inspur contributed to the manufacturing of the printed circuit boards and is also contributing to the system installation and testing.” At this point, the system is still being assembled and tested at the National University of Defense Technology before being installed at its permanent home.

As we know from the original Tianhe-1A system, NUDT has been hard at work on their own interconnects. On the TH-2, they are using their TH Express-2 interconnect network, which taps a fat tree topology with 13 switches, each with 576 ports at the top level.

As Dongarra notes, “This is an optoelectronics hybrid transport technology and runs a proprietary network. The interconnect uses their own chip set. The high radix router ASIC called NRC has a 90 nm feature size with a 17.16×17.16 mm die and 2577 pins.”

He says that “the throughput of a single NRC is 2.56 Tbps. The network interface ASIC called NIC has the same feature size and package as the NIC, the die size is 10.76×10.76 mm, 675 pins and uses PCI-E G2 16X. A broadcast operation via MPI was running at 6.36 GB/s and the latency measured with 64K of data within 12,000 nodes is about 85us.

Dongarra says that the 720 square meter footprint means a rather confined space and isn’t optimally laid out. However, this is just temporary since when it arrives in its permanent home in Guangzhou it will be laid out more efficiently, as seen in the artist’s rendering of the system at the top of the article.

The peak power consumption under load for the system is 17.6 MWs, but this is just for the processors, memory and interconnect network. When the closely-coupled chilled water with customized liquid water cooling unit operations are added in, the total consumption is 24 MWs. Dongarra says that it has a high cooling capacity of 80 KW and when installed at its home site, it will use city water as its source. Power load is monitored by a series of lights on the cabinet doors.

For far more details about these and other aspects of the Tianhe-2 system, check out Dr. Dongarra’s extensive report…

http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire