Floating Genomics to the Cloud with AWS

By Ian Armas Foster

June 5, 2013

As more institutions implement cloud strategies to supplement their best HPC practices, it is important to consider the extent to which companies run HPC applications in the cloud and for which applications it is particularly useful.

David Pellerin and Jafar Shameen, both of HPC Business Development at Amazon Web Services, gave a presentation at AWS Summit 2013 to discuss which industries and companies are using the cloud service to run HPC applications. Not surprisingly, the talk mostly centered on applications in genomics and the life sciences, as highlighted by a third speaker in Alex Dickinson, SVP of Cloud Genomics at Illumina.

“What you end up doing is building a cluster for the worst, nastiest problem you have,” said Pellerin on the risks and costs of building in-house HPC clusters. “You get this big, expensive cluster that for most of the workload, it doesn’t need to be there.” No company should know this better than Amazon, as they started being a cloud services provider as a result of having an excess of computing resources that were only put to use at certain peak times.

Scientific disciplines such as genomics and high energy particle physics turn to cloud computing for certain HPC applications for a fairly basic reason: cloud computing is optimal for experimentation. For Pellerin, computing on AWS allows ‘the ability to fail fast.’ An in-house system is subject to job queue and scheduling limitations that generally prove both costly and time-consuming.

Again, ‘the ability to fail fast’ is an important one for a researcher looking to initially test several hypotheses he or she may have given their large dataset. This capability doesn’t exclusively help those in the sciences, as financial services are running risk analytics on AWS while engineering firms run CAD and CAE simulations for aerospace, according to Pellerin. However, those terms of ‘risk analytics’ and ‘CAD simulations’ imply a theoretical, experimental approach to computing, where the value of running multiple scenarios in a short amount of time is considerable.

The focus here, though, was on the life sciences and on genomics in particular. The advances over the last decade have turned genome sequencing from a problem of actually performing the procedure to storing the relevant data. As Dickinson explained, “When we ask our customers where do they spend their time…the actual time they spend sequencing is relatively small. What really kills them is the bioinformatics, which is comprised of a lot of computationally intensive processing and also now interpretation.”

Ten years ago, the Human Genome was completed after 13 years and a $4 billion investment. Today, that same process takes only a day and about a thousand dollars to complete.

As such, genomic sequencing has scaled faster than Moore’s Law over the last decade, as seen in the figure below. This presents an obvious storage issue, especially when policy requires for that information to be kept for several years.

Last week, we highlighted the work being done in BonFIRE to test angles of incidence to maximize the destruction of cancer rays while harming as few working cells as possible. Illumina isn’t working on this problem exactly but they are working on individual genomes to determine cancer causes. Dickinson argued that since everyone clearly has a different genome and that tumor growth is sparked by a malfunction in the cells processing genetic instructions, personalizing cancer treatment means running individual genomes.

“Our solution was to build something called BaseSpace,” Dickinson explained as he delved deeper into how Illumina works with AWS. “In the labs we connect the instruments to BaseSpace using standard internet connections. It turns out that even though they produce a lot of data, they do it at a relatively steady pace.”

Scientists like to keep the raw data of every genome that is sequenced, a commitment that requires approximately 120 GB of data. One might expect for a genome, which consists of about 3 billion bases, to require significantly more than 120 GB to unravel. However, since humans are quite genetically similar to each other, with variances among individuals only representing about 0.1 percent of the genetic signature, they are able to pare the dataset down to that 120 GB level. Once that’s done, according to Dickinson, Illumina can comfortably transfer that data to AWS through BaseSpace at a rate of about 7 Mbps.

Beyond storing genomes and running experimental tests on them, cloud and AWS in particular hope to be a facilitator of scientific collaboration. Today, the top method for sending massive datasets is by sending physical hard drives through the mail, according to Dickinson. The hope is that someday the cloud will become the first choice in delivering massive datasets such that exist in genome sequencing to other facilities, and Illumina is one of the life science companies pushing that paradigm.

Of course, there are more examples of institutions performing HPC applications in AWS, as explained by Shameen. Among such is Pfizer, who uses the Amazon Virtual Private Cloud to run pharmaceutical computational experiments in an extra secure environment, according to Shameen. Globus is a genomics company who, similar to Illumina, transfers their data to AWS, but this time over the Amazon implemented Galaxy platform. Further, Shameen pointed to the Harvard Medical School as an early adopter of AWS for excess and experimental HPC workloads.

As shown by Illumina, running experimental HPC applications in a cloud service like AWS is gaining more traction, especially in the life sciences and genomics department.

Related Articles

The Science Cloud Cometh

Throwing Cancer on the BonFIRE

CERN, Google, and the Future of Global Science Initiatives

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire