Cycling through Genomics and Other Cloud HPC Applications

By Ian Armas Foster

June 24, 2013

HPC applications run in the cloud tend to be those of the experimental nature. That property thus lends cloud-based HPC nicely to scientific purposes, especially that in the genomics world, to the extent that such efforts are being recognized as a ‘best practice’ in a biological IT context.

HPC in the Cloud caught up with Cycle Computing CEO and Co-Founder Jason Stowe, where he discussed the company’s efforts in aiding Schrodinger, Inc., a company focused on chemical simulation for biotechnical and pharmaceutical purposes, in their efforts as they won Bio-IT World’s best practices award last month. Stowe also discussed how exactly their Utility HPC software advances the state of scientific HPC in the cloud as well as their initiatives in the months and years to come.

“Schrodinger won the best practice award,” Stowe said, “for a large-scale run that we did with them where we had a 50,000-core computing environment and ran approximately 12 years of science on it in 3 hours.” For Stowe, the biggest benefits here are cost and speed. In speaking with analysts from places like IDC, the cost of buying and operating such a server to run those computations could easily run to the millions.

That cost is worth it for national labs and large institutions that would continually use those servers. For a company like Schrodinger, however, the cost and space requirements to install such a datacenter would be prohibitive.

As such, through Cycle’s Utility HPC software running in the Amazon Web Services cloud, Schrodinger was able to significantly reduce costs on the simulation. “We turned [the system] off,” Stowe explained, “and the total cost at the time to do this was $4829 to run per hour so about $14,500 total for the workload.”

However, as one would surmise from previous HPC in the Cloud articles on organizations like CERN and the European Space Agency running experimental applications on a virtualized cloud environment, cloud-based HPC is not limited to those who can ill afford an idle datacenter. “We have customers who use 40 cores and customers who use 40,000 cores.”

According to Stowe, Cycle worked recently with a large pharmaceutical company, which was running genomics simulations, to garner similar cost and time compression, where they reportedly ran “39 years of science in 11 hours” on a ten thousand server infrastructure, a process which only cost about $4400.

Stowe explained how their software utilizes and takes advantage of server clusters such that they mimic an in-house scientific HPC machine. “Our premise here with utility supercomputing is basically that individual researchers can now grab very large high throughput capability machines.”

High throughput is important, as it is that feature which appeals to the majority of new scientific applications being built and run today. “[The new science is] data parallel, it’s big data, it’s analytics. All of those workloads work well on high throughput computing environments. Basically we have the ability to create large-scale environments that operate quickly to run these newer classes of workloads that require a high throughput,” Stowe said.

Specifically, according to Stowe, Cycle’s Utility HPC software works on creating that throughput with a heavy emphasis on job scheduling and workload management. Further, the software is quite active in the automatic bidding for Amazon’s idle computing services, acquiring additional resources when various jobs require it. “As you accumulate more and more samples from the sequencer, we would be able to deploy large scale clusters that would be capable of analyzing that data and then turn around and managing cost across those clusters by handling spot market bidding, which is Amazon’s marketplace for idle computing.”

 To give an example, Stowe spoke of a genomics company that requested MPI jobs that required many processors and heavy throughput. “If you’ve got a next gen sequencer, putting data down on a local cloud system, our software would schedule copying the data externally and would deploy clusters to run secondary and tertiary analysis on the genomic data, it would handle automatically archiving a copy of that data into glaciers so you always had a backup at a very low cost point”

Genomics is one of the more notable use cases for those looking to run certain HPC applications in a virtualized environment. This makes sense, as the ability to cheaply and quickly run genomic sequencing relative to ten years ago (when it took a decade and several billion dollars) is impressive. It is also highly data-intensive, and most of that data is necessary in the analytics. Stowe noted that Cycle’s goal is to be able to run background analytics while the data is stored in various cloud servers.

However, Cycle does not aim to solely focus on genomics. Stowe noted that cloud-based HPC applications are attracting the attentions of manufacturing and finance folks, as they look to run multiple experimental simulations without having to further tax their in-house HPC resources, and Cycle hopes to be on the forefront of that.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire