Exascale Requires 25x Boost in Energy Efficiency, NVIDIA’s Dally Says

By Alex Woodie

June 24, 2013

While there is a universal desire in the HPC community build the world’s exascale system, the achievement will require a major breakthrough in not only chip design and power utilization but programming methods, NVIDIA chief scientist Bill Dally said in a keynote address at ISC 2013 last week in Leipzig, Germany.

In last Monday’s speech, titled “Future Challenges of Large-scale Computing,” Dally outlined what needs to happen to achieve an exascale system in the next 10 years. According to Dally, who is also a senior vice president of research at NVIDIA and a professor at Stanford University, it boils down to two issues: power and programming.

Power may present the biggest dilemma to building an exascale system, which is defined as delivering 1 exaflop (or 1,000 petaflops) of floating point operations per second. The world’s largest rated supercomputer is the new Tianhe-2, which recorded 33.8 petaflops of computing capacity in the latest Top 500 list of the world’s largest supercomputers, while consuming nearly 18 megawatts of electricity. It has a theoretical peak of nearly 55 petaflops.

Theoretically, an exascale system could be built using only x86 processors, Dally said, but it would require as much as 2 gigawatts of power. That’s equivalent to the entire output of the Hoover Dam, Dally said, according to an NVIDIA blog post on the keynote.

Using GPUs in addition to X86 processors is a better approach to exascale, but it only gets you part of the way. According to Dally, an exascale system built with NVIDIA Kepler K20 co-processors would consume about 150 megawatts. That’s nearly 10 times the amount consumed by Tianhe-2, which is composed of 32,000 Intel Ivy Bridge sockets and 48,000 Xeon Phi boards.

Instead, HPC system developers need to take an entirely new approach to get around the power crunch, Dally said. The NVIDIA chief scientist said reaching exascale will require a 25x improvement in energy efficiency. So the 2 gigaflops per watt that can be squeezed from today’s systems needs to improve to about 50 gigaflops per watt in the future exascale system.

Relying on Moore’s Law to get that 25x improvement is probably not the best approach either. According to Dally, advances in manufacturing processes will deliver about a 2.2x improvement in performance per watt. That leaves an energy efficiency gap of 12x that needs to be filled in by other means.

Dally sees a combination of better circuit design and better processor architectures to close the gap. If done correctly, these advances could deliver 3x and 4x improvements in performance per watt, respectively.

According to NVIDIA’s blog, Dally is overseeing several programs in the engineering department that could deliver energy improvements, including: utilizing hierarchical register files; two-level scheduling; and optimizing temporal SIMT. 

Improving the arithmetic capabilities of processors will only get you so far in solving the power crunch, he said. “We’ve been so fixated on counting flops that we think they matter in terms of power, but communication inside the system takes more energy than arithmetic,” Dally said. “Power goes into moving data around. Power limits all computing and communication dominates power.”

Besides addressing the power crunch, the way that supercomputers are programmed today also serves as an impediment to exascale systems.

Programmers today are overburdened and try to do too much with a limited array of tools, Dally said. A strict division of labor should be instituted among the triumvirate of programmers, tools, and the architecture to drive efficiency into HPC systems. 

The best result is delivered when each group “plays their positions,” he said. Programmers ought to spend their time writing better algorithms and implementing parallelism instead of worrying about optimization or mapping, which are better off handled by programming tools. The underlying architecture should just provide the underlying compute power, and otherwise “stay out of the way,” Dally said according to the NVIDIA blog.

Dally and his team are investigating the potential for items such as collection-oriented programming methods to make programming supercomputers easier. Exascale-sized HPC systems are possible in the next decade if these limitations are addressed, he said.

Related Articles

Developers Tout GPI Model for Exascale Computing

GASPI Targets Exascale Programming Limits

Floating Funding to Exascale Island

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire