Exascale Requires 25x Boost in Energy Efficiency, NVIDIA’s Dally Says

By Alex Woodie

June 24, 2013

While there is a universal desire in the HPC community build the world’s exascale system, the achievement will require a major breakthrough in not only chip design and power utilization but programming methods, NVIDIA chief scientist Bill Dally said in a keynote address at ISC 2013 last week in Leipzig, Germany.

In last Monday’s speech, titled “Future Challenges of Large-scale Computing,” Dally outlined what needs to happen to achieve an exascale system in the next 10 years. According to Dally, who is also a senior vice president of research at NVIDIA and a professor at Stanford University, it boils down to two issues: power and programming.

Power may present the biggest dilemma to building an exascale system, which is defined as delivering 1 exaflop (or 1,000 petaflops) of floating point operations per second. The world’s largest rated supercomputer is the new Tianhe-2, which recorded 33.8 petaflops of computing capacity in the latest Top 500 list of the world’s largest supercomputers, while consuming nearly 18 megawatts of electricity. It has a theoretical peak of nearly 55 petaflops.

Theoretically, an exascale system could be built using only x86 processors, Dally said, but it would require as much as 2 gigawatts of power. That’s equivalent to the entire output of the Hoover Dam, Dally said, according to an NVIDIA blog post on the keynote.

Using GPUs in addition to X86 processors is a better approach to exascale, but it only gets you part of the way. According to Dally, an exascale system built with NVIDIA Kepler K20 co-processors would consume about 150 megawatts. That’s nearly 10 times the amount consumed by Tianhe-2, which is composed of 32,000 Intel Ivy Bridge sockets and 48,000 Xeon Phi boards.

Instead, HPC system developers need to take an entirely new approach to get around the power crunch, Dally said. The NVIDIA chief scientist said reaching exascale will require a 25x improvement in energy efficiency. So the 2 gigaflops per watt that can be squeezed from today’s systems needs to improve to about 50 gigaflops per watt in the future exascale system.

Relying on Moore’s Law to get that 25x improvement is probably not the best approach either. According to Dally, advances in manufacturing processes will deliver about a 2.2x improvement in performance per watt. That leaves an energy efficiency gap of 12x that needs to be filled in by other means.

Dally sees a combination of better circuit design and better processor architectures to close the gap. If done correctly, these advances could deliver 3x and 4x improvements in performance per watt, respectively.

According to NVIDIA’s blog, Dally is overseeing several programs in the engineering department that could deliver energy improvements, including: utilizing hierarchical register files; two-level scheduling; and optimizing temporal SIMT. 

Improving the arithmetic capabilities of processors will only get you so far in solving the power crunch, he said. “We’ve been so fixated on counting flops that we think they matter in terms of power, but communication inside the system takes more energy than arithmetic,” Dally said. “Power goes into moving data around. Power limits all computing and communication dominates power.”

Besides addressing the power crunch, the way that supercomputers are programmed today also serves as an impediment to exascale systems.

Programmers today are overburdened and try to do too much with a limited array of tools, Dally said. A strict division of labor should be instituted among the triumvirate of programmers, tools, and the architecture to drive efficiency into HPC systems. 

The best result is delivered when each group “plays their positions,” he said. Programmers ought to spend their time writing better algorithms and implementing parallelism instead of worrying about optimization or mapping, which are better off handled by programming tools. The underlying architecture should just provide the underlying compute power, and otherwise “stay out of the way,” Dally said according to the NVIDIA blog.

Dally and his team are investigating the potential for items such as collection-oriented programming methods to make programming supercomputers easier. Exascale-sized HPC systems are possible in the next decade if these limitations are addressed, he said.

Related Articles

Developers Tout GPI Model for Exascale Computing

GASPI Targets Exascale Programming Limits

Floating Funding to Exascale Island

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire