A Toolkit for Materials Scientific Cloud Computing

By Ian Armas Foster

July 5, 2013

There are two elements in improving high performance computing with regard to scientific computing. The first is well covered over on HPCwire, and examines how the latest advancements in the greatest supercomputers push the boundaries of modeling and computation. The second component deals with making the applications that run those models and simulations more accessible to scientists who may not have access to those top-end supercomputers.

Recognizing this, researchers from the physics department at the University of Washington at Seattle, through a grant from the National Science Foundation, created what they call a ‘virtual platform’ for scientific cloud computing, or SC2VP, which they simply named “SC2IT” for scientific cloud computing interface tools.

“The main elements of our new platform include a virtual cloud computer blueprint or AMI, which contains preinstalled and optimized scientific codes and utilities.”

The platform, according to the researchers, is meant to simulate the parallelism and extensive data storage capabilities of a large supercomputer in a cloud environment, with the emphasis being to cater toward the material sciences. “This blueprint,” the researchers noted, “contains libraries, compilers, a parallel computing environment, and preconfigured applications typically useful for materials scientists. E.g. these applications can calculate structural and electronic properties of materials.”

What is important to note here is that the physicists built their toolkit with creating an HPC cluster as their top priority. Building a virtual machine is, according to the physicists, is not as difficult as making that cluster run high performance scientific applications. As they noted, “launching a set of virtual machines from a cloud provider is easy but does not produce a fully functional HPC cluster… To truly bring advanced science to a broad class of end users, another step is necessary beyond launching a parallel MS program on a cloud cluster.”

That next level, according to the researchers, involves congregating various scientific computing codes that optimize certain types of problems. These codes already exist through previous computational research, but the trick was incorporating them en masse in a toolset that would allow them to be deployed on a virtual cluster.

“The development of novel scientific software is often modular: computational scientists link existing codes together and combine them with new developments to produce state-of-the-art results.”

The particular existing codes they used included a Density Functional Theory code, whose purpose is to assess and order the dynamic motion relationships among the coordinates in a material, essentially building a model of how a substance moves. With that, they added two codes to calculate a material’s vibrational tendencies, including “a new module to next derive vibrational properties; and thirdly, an existing spectroscopy code to finally calculate an X-ray spectrum incorporating the vibrational information.”

Below is a screenshot of how the researchers implemented the spectroscopy code through the Graphical User Interface (GUI) hey set up. The red arrow denotes where the user can identify upon which resources the implementation would ideally run.

Materials science has grown rapidly over the last decade, simply because the resolution and precision with which one can observe and test substances has seen a marked increase. However, as is seen in genomics, another popular scientific cloud computing use case, those materials and their associated tests represent a lot of information to be stored and processed. Being able to run those computations and store the necessary data in the cloud would promote cost-effectiveness, providing access to researchers without extensive in-house HPC resources.

It also incidentally fosters collaboration, as retrieving data from a virtual cluster in the cloud is simpler than transmitting entire datasets over a user’s limited bandwidth or (still fairly common today) sending physical hard drives with copies of the large datasets in the mail.

While the focus is on materials science, it is the hope of the University of Washington physicists that this approach of aggregating optimized codes and tools can be applied to other fields of study. “We embedded the interface and blueprint in a GUI environment that enables MS end users to perform specific SCC calculations with a few mouse clicks. The same approach can be followed for SCC enhancement of GUIs for other fields of research.”

Again, this approach could prove useful to fields like genomics, where datasets are exploding and the incentive to run experiments quickly is high. The researchers here designed their toolset to run on the Amazon Elastic Compute Cloud, representing an eye toward completing high performance applications. “We tested the performance of this setup to prove that HPC calculations for materials science can be done efficiently in a cloud environment.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire