Research Roundup: Expanding the Science Cloud

By Nicole Hemsoth

July 7, 2013

This week’s hand-picked assortment focuses on advancements made to improve the performance of scientific applications in the cloud, touching on issues such as fault tolerance, workflow management, and 2D and 3D cellular simulation. 

Cloud Service Fault Tolerance

Cloud computing presents a unique opportunity for science and engineering with benefits compared to traditional high-performance computing, especially for smaller compute jobs and entry-level users to parallel computing. However, according to researchers from RMIT University in Melbourne, doubts remain for production high-performance computing in the cloud, the so-called science cloud, as predictable performance, reliability and therefore costs remain elusive for many applications.

Their paper used parameterized architectural patterns to assist with fault tolerance and cost predictions for science clouds, in which a single job typically holds many virtual machines for a long time, communication can involve massive data movements, and buffered streams allow parallel processing to proceed while data transfers are still incomplete.

They utilized predictive models, simulation and actual runs to estimate run times with acceptable accuracy for two of the most common architectural patterns for data-intensive scientific computing: MapReduce and Combinational Logic. Run times were fundamental to understand fee-for-service costs of clouds.

These are typically charged by the hour and the number of compute nodes or cores used. The researchers evaluated their models using realistic cloud experiments from collaborative physics research projects and showed that proactive and reactive fault tolerance is manageable, predictable and composable, in principle, especially at the architectural level.

Next–Cloud Computing and Cellular Automata Simulation->

Cloud Computing and Cellular Automata Simulation

Cellular automata can be applied to solve several problems in a variety of areas, such as biology, chemistry, medicine, physics, astronomy, economics, and urban planning.

The automata are defined by simple rules that give rise to behavior of great complexity running on very large matrices. 2D applications may require more than 106 × 106 matrix cells, which are usually beyond the computational capacity of local clusters of computers.

A paper from Brazilian researchers out of Pontifical Catholic University of Rio de Janeiro and the Federal University of Espirito Santo presented a solution for traditional cellular automata simulations. They proposed a scalable software framework, based on cloud computing technology, which is capable of dealing with very large matrices.

The use of the framework facilitated the instrumentation of simulation experiments by non-computer experts, as it removed the burden related to the configuration of MapReduce jobs, so that researchers need only be concerned with their simulation algorithms.

Next–Managing Computational Workflows in the Cloud->

Managing Computational Workflows in the Cloud

Scientists today are exploring the use of new tools and computing platforms to do their science. They are using workflow management tools to describe and manage complex applications and are evaluating the features and performance of clouds to see if they meet their computational needs, argue researchers out of the USC Information Sciences Institute.

Although today, hosting is limited to providing virtual resources and simple services, one can imagine that in the future entire scientific analyses will be hosted for the user. The latter would specify the desired analysis, the timeframe of the computation, and the available budget.

Hosted services would then deliver the desired results within the provided constraints. Their paper described current work on managing scientific applications on the cloud, focusing on workflow management and related data management issues.

Frequently, applications are not represented by single workflows but rather as sets of related workflow ensembles. Thus, hosted services need to be able to manage entire workflow ensembles, evaluating tradeoffs between completing as many high-value ensemble members as possible and delivering results within a certain time and budget.

Their paper gives an overview of existing hosted science issues, presents the current state of the art on resource provisioning that can support it, as well as outlines future research directions in this field.

Next–Optimizing Data Analysis in the Cloud->

Optimizing Data Analysis in the Cloud

A research team out of Duke University presented Cumulon, a system designed to help users rapidly develop and intelligently deploy matrix-based big-data analysis programs in the cloud.

Cumulon, according to the research, features a flexible execution model and new operators especially suited for such workloads. In the paper, they show how to implement Cumulon on top of Hadoop/HDFS while avoiding limitations of MapReduce, and demonstrate Cumulon’s performance advantages over existing Hadoop-based systems for statistical data analysis.

To support intelligent deployment in the cloud according to time/budget constraints, Cumulon goes beyond database style optimization to make choices automatically on not only physical operators and their parameters, but also hardware provisioning and configuration settings, according to the Duke researchers.

 They applied a suite of benchmarking, simulation, modeling, and search techniques to support effective cost-based optimization over this rich space of deployment plans.

Next–Business Integration as a Service: The Case Study of the University of Southampton->

Business Integration as a Service: The Case Study of the University of Southampton

Finally, a paper out of the University of Southampton presented Business Integration as a Service (BIaaS) to allow two services to work together in the Cloud to achieve a streamline process. They illustrated this integration using two services; Return on Investment (ROI) Measurement as a Service (RMaaS) and Risk Analysis as a Service (RAaaS) in the case study at the University of Southampton.

The case study demonstrated the cost-savings and the risk analysis achieved, so two services can work as a single service. Advanced techniques were used to demonstrate statistical services and 3D Visualisation services under the remit of RMaaS and Monte Carlo Simulation as a Service behind the design of RAaaS.

Computational results were presented with their implications discussed. Different types of risks associated with Cloud adoption can be calculated easily, rapidly and accurately with the use of BIaaS. This case study confirmed the benefits of BIaaS adoption, including cost reduction and improvements in efficiency and risk analysis. Implementation of BIaaS in other organisations is also discussed.

Important data arising from the integration of RMaaS and RAaaS are useful for management and stakeholders of University of Southampton.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire