Intel Hits Refresh on Datacenter Vision

By Nicole Hemsoth

July 26, 2013

This week we were on hand for Intel’s “Rearchitecting the Datacenter” event, which offered a glimpse into how the company imagines its future path along both low power and high performance server routes.

In addition to the announcement of key details around the Atom family and upcoming Avoton and Rangeley, and a general roadmap for the 14nm products expected to roll out in the next few years, the emphasis was on integration between hardware and software. From software defined storage and networks to the role of fabrics in typing together low and super-power cores, the company collected its strategy under a number of nets–one of which was HPC specifically.

While a great deal of the focus was on web-scale and enterprise datacenters, the company’s HPC lead, Raj Hazra, gave a detailed presentation about how new trends can push HPC into a greater “knowledge economy” and into more mainstream (beyond the “traditional” academic and government arenas) contexts.  

The recorded presentation reflects Hazra’s wider view of where Intel stands with its high performance computing strategy on a broad level, which was meant for the room’s more mainstream audience. To drill down on specifics, we spent some time chatting with him in more detail about the key concepts he outlined, including power, performance, neo-heterogeneity, integration and the future reach of Xeon Phi into the enterprise. 

Hazra emphasized the concept of Intel’s focus on “neo-heterogeneity” in his discussion of where HPC fits into Intel’s larger datacenter strategy going forward. As he defined, this refers to making a new approach to heterogeneity possibly by taking advantage of hardware that’s been designed for different performance (and performance per watt) but which looks unified on the programmer’s side.  

The ROI here, he explains, is in providing the capability for users to quickly and easily port an application and then contend about the much longer process of optimization. For users waiting on the long port times to discrete GPUs, he says, it’s a risk as the speedups may or may not be present.

With Xeon Phi, however, he stresses, there is little risk in porting and “trying out” the approach and the optimization process is usually shorter than with GPUs and users find that in the process their codes are optimized for general Xeon as they go. While we’re still on the lookout for a breakdown of some common application types and their GPU to co-processor optimization times (not port–Intel has that time cut down considerably) this does reflect what we’ve heard from Phi and GPU users at TACC, among other centers.

The real test in the coming years for Phi’s reach outside of the government and academic sites is when the ISV community gets behind the co-processor. The initial users in academia and elsewhere generally write their own codes and aren’t reliant on the internal processes of ISV approval and tuning. Once a wide range of commercial codes are conditioned to take advantage of any potential performance benefits, the market for Xeon Phi will be quite large, Hazra anticipates.

And certainly, as with the other items on Intel’s roadmap, the focus is not on niches–it’s on reaching every segment of the server market via ultra-low power approaches fed by developments on the Atom family side all the way up to Phi. The company stressed this week its role in bringing software-defined networking, storage and more integrated compute capabilities to all market segments–and HPC is no exception.

The integration value coming from Intel on this side will be felt when the interconnect assets they’ve pulled in from QLogic and Cray come to bear. On this topic, Hazra says Intel is focused on having a discrete network solution wherein they integrate the network interface control on the processors. From there, he says, “we’ll innovate on what that integrated version is to be able to improve performance, lower power and add features to it so it addresses next-gen programming models.”

In terms of the role of QLogic in particular, he notes, “our goal, and we’re engaged in building the next gen products with integrated fabric and this has to cover the gamut, from high-end HPC to midrange and to the enterprise.”

As one might imagine, the HPC flavor on the Top 500 and academic side was more muted in favor of putting high-end processor technology in greater enterprise context during this general datacenter event. However, the one key topic that tied HPC to the rest of the strategy outline is how the technologies developed in this community can feed a much wider set of general enterprise applications and server approaches. Hazra agreed that big data is indeed a prime way for his HPC group to extend outward, noting that as analytics evolve, the need to blend high performance computing developments (and in general, the role of more robust hardware) with these new algorithms will open up new opportunities.

Big data and, of course, the range of scientific and research applications, are all stoking HPC investments on Intel’s side, Hazra side. Unlike AMD’s recent statement that HPC is relatively low margin, he stressed Intel’s investment in it with a focus on longer-term goals. “The paradigm is that we are going to be continuing to improve compute capacity. Manycore is the way forward.  We are investing in it, but the world is still on multicore. Still we’re starting to see leading edges of  applications and algorithms that are going to manycore and we expect that to be the way applications s of the future are built so we have to move now instead of being reactive.”

As the company’s senior VP and General Manager of the Datacenter and Connected Systems Group, Diane Bryant, stressed repeatedly, there are converging forces (cloud and big data in particular) that require tighter integration at the storage, network and rack levels. She outlined the company’s Rack Scale Architecture (RSA) which pushes utilization and flexibility for cloud datacenters in particular, and played up the role of low-power, ultra-dense servers for a future that doesn’t just include cloud datacenters or small devices.

Hazra echoed the value of this move, noting that HPC is also diversifying. He says that while the majority of HPC remains under carefully engineered co-design there is no doubt that certain segments of HPC that share the characteristics of low energy scale-out (life sciences, algorithms and apps that fit that scale-out highly dense, low power pattern) represent a trend of overall diversification of system architecture. “It’s the beginning of a curve,” he says, “and Intel wants to be responsive and not reactive.”

We asked Hazra whether or not this steady march to lower power and higher density marks a death of the server industry as we know it, in part because of the event’s emphasis on Open Compute inspired designs and approaches. “I don’t know if it’s a death or rebirth,” he says, but “the open projects bring like minds together and provide a scaffolding to build greater things.” He says that questions about sea changes in the server businesses this aren’t unfamiliar..”In the HPC space at one point, many said the Beowulf clusters would kill HPC, but look at the tremendous amounts of differentiation.”

And that’s just what Intel wants to architect into their strategy–a base that extends across it’s ultra-low power lines all the way up to Phi–and one that lets the OEMs differentiate to create value and differentiation as the lines between what chipmakers traditionally do (and do not do) are blurred.

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire