Comprehensively Evaluating HPC Cloud Cost Benefits

By Ian Armas Foster

July 30, 2013

HP Labs partnered with the University of Illinois at Champaign-Urbana to comprehensively evaluate the feasibility of running high performance applications in the cloud. The research set out to answer many questions, including wondering how HPC applications fare in the cloud versus supercomputers (they used the Ranger and Taub machines for those tests), which applications were best suited for cloud deployment, and what the cost benefits were for certain organizations in maintaining their high performance needs in a cloud.

Below is a grid of all the platforms they used in testing their various applications. As one can see, the Ranger and Taub systems are there along with public and private cloud instances.

It is important to note the approach the research team took with setting up their cloud systems. While they could have built a dedicated instance that would perform closer to supercomputing standards, they figured that such an instance would be unlikely in the scenario of a mid-sized enterprise or startup looking to purchase on-demand HPC resources.

With that said, they still took steps to optimize the performance. “To get maximum performance from virtual machines, we avoided any sharing of physical cores between virtual cores. In case of cloud, most common deployment of multi-tenancy is not sharing individual physical cores, but rather done at the node, or even coarser level. This is even more true with increasing number of cores per server.”

They tested those cloud systems and the control supercomputers on a variety of applications, including Jacobi2D, used for scientific simulation and image processing, NAMD, a molecular dynamics application, ChaNGa, used for cosmology simulation, and the NQueens problem among others.

The graphs above show how well the various machines’ performance scaled relative to the various applications. The applications that reportedly found trouble scaling were those that were communication intensive. “IS is a communication intensive benchmark and involves data reshuffling and permutation operations for sorting. Sweep3Dalso exhibits poor weak scaling after 4–8 cores on cloud. Other communication intensive applications such as LU, NAMD and ChaNGa also stop scaling on private cloud around 32 cores,” the report noted.

In all instances except for the public cloud, the EP, Jacobi2D and NQueens applications scaled up to 256 cores, while the public cloud imposed performance penalties once more than four cores were used.

Once the performance drop off was established for clouds, a fact that was altogether not surprising, the next task was to determine exactly what kind of penalty was suffered, such that they could relate that to the cost of apportioning those systems in the process of determining if cloud is indeed a cost effective means of securing HPC resources.

To quantify the amount of variability on cloud and compare it with a supercomputer, we calculated the coefficient of variation (standard deviation/mean) for execution time of ChaNGa across 5 executions,” the report stated. According to the research team, the amount of variability increases as they scale up as a result of decrease in granularity. “For the case of 256 cores at public cloud, standard deviation is equal to half the mean, implying that on average, values are spread out between 0.5x mean and 1.5x mean resulting in low predictability of performance across runs. In contrast, private cloud shows less variability.”

Overall, latency and bandwidth on cloud ended up coming in a couple of orders of magnitude below that of their Ranger and Taub machines, as shown in the logarithmic graphs below.

These bandwidth and latency issues make it difficult on those aforementioned communication intensive applications, where obviously contact among cores and nodes to complete a problem is key.

Again, the researchers note that a dedicated public cloud instance would solve a great deal of these problems. However, such an instance would likely cost more and therefore become less feasible for the mid-sized companies and startups that would utilize it. The multi-tenancy cloud setup renders many high performance applications untenable. “The performance of many HPC applications is very sensitive to the interconnect, as we showed in our experimental evaluation. In particular low latency requirements are typical for the HPC applications that incur substantial communication. This is in contrast with the commodity Ethernet network (1Gbps today moving to 10Gbps) typically deployed in cloud infrastructure,” the report noted.

With that said, it is still prudent for those smallmedium companies to enlist cloud-based HPC services, as the cost analysis shows below.

Even the communication intensive applications work well up to a certain amount of cores, an amount of cores unlikely to be exceeded by a medium institution. “The ability to take advantage of a large variety of different architectures (with different interconnects, processor types, memory sizes, etc.) can result in better utilization at global scale, compared to the limited choices available in any individual organization,” the report argued. Below is a sample of what such an architecture that relies on just four-core cloud-based machines would look like.

The report does go on to say that dedicated instances would be advantageous to large institutions looking for burst capacity, a concept that has been discussed here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire