Since 1986 - Covering the Fastest Computers in the World and the People Who Run Them

Language Flags
August 2, 2013

XSEDE Keynote: Democratizing Scientific Research

Jan A. Zverina, San Diego Supercomputer Center

“As the number of Native American scientists slowly increases to help democratize scientific research for their respective communities, we need to continually train non-scientific researchers on how to work with Native people,” according to LeManuel “Lee” Bitsóí, a member of the Navajo Nation and Harvard University research associate.

“Native people are not anti-science; it’s that we want a pro-indigenous approach to the way science is conducted within our communities,” Dr. Bitsóí told attendees of XSEDE13, the annual conference of the National Science Foundation’s (NSF) Extreme Science and Engineering Discovery Environment (XSEDE) program held July 22-25 in San Diego.

“As Native people, we have always practiced science,” said Bitsóí, who also is the lead Native American scholar for an initiative focusing on young men of color sponsored by the College Board, and secretary for the board of directors for the Society for Advancement of Chicanos/Latinos and Native Americans in Science. “Only we don’t call it science. We just call it a part of life.”

“Like other underrepresented communities, Native people have developed their own diverse scientific knowledge base that includes mathematics, chemistry, and many biosciences typically found in the scientific research community at large,” said Bitsóí, whose focus is on genomics training and epigenetics in particular. But the Natives have passed much of this knowledge on through oral history – which has only recently been recognized as a legitimate source of data by the general scientific community – and this knowledge base also includes areas such as animal husbandry, ethnobotany, and ethnomedicine, as well as “healing” and “arts.”  

“In Custer Died for Your Sins: An Indian Manifesto, Standing Rock Sioux scholar Vine Deloria Jr. argued that non-Native researchers and academics were mainly interested in their own research goals and advancing their careers, and essentially were not concerned about the real challenges that American Indians/Alaska Natives face,” said Bitsóí. “Dr. Frank Dukepoo (Hopi/Laguna) also questioned the bilagáana, or Western, approach to research, especially scientific research in American Indian/Alaska Native communities. Dr. Dukepoo always deferred to his Native culture and upbringing whenever he challenged the status quo.”

Pro-Indigenous Approach

“This type of questioning is what Dr. Kim Tallbear (Sisseton Wahpeton), assistant professor at the University of California, Berkeley, refers to as the first step in democratizing scientific research,” noted Bitsóí. “As Native scientists and researchers, we have made inroads in many disciplines to advance our understanding of how to optimize scientific discoveries for our people.”

The path to a more inclusive science community has not been without challenges, a major one being the lack of effective communication between Natives and non-Natives at the researcher level, as well as society at large. That in turn sometimes discourages Native Americans from pursuing a career in science, instead fostering a widespread reluctance to engage with researchers outside their communities.

During 2007 and 2008 only 522 American Indians and Alaska Natives attained a degree in the biosciences out of a total of almost 78,000 students, said Bitsóí, showing a chart from the U.S. Department of Education. In that same period, 2,203 non-residents attained a degree, according to the same chart.

“What this shows is that higher education in the U.S. is really doing a much better job in educating foreign students than it is in graduating our own people,” said Bitsóí.

Despite science always being a part of Native knowledge bases, there is a real need to train non-Native research scientists on how to work with indigenous communities. That includes learning how to consult with local Native communities and their leaders, better understanding the practices and traditions of those communities, and knowing the complexities of issues such as consent while respecting privacy concerns.

“Implicit is a new definition of rigorous scientific research, one that includes both community development and scientific progress as legitimate objectives of genomic research,” said Bitsóí, who acknowledged his mentors and advisors over the years, including Professors William Gelbart and George Church at Harvard University, and Professors Bette Jacobs and Jeff Collmann at Georgetown University.

Epigenetics and Intergenerational Trauma

Bitsóí, who has devoted his career to enhancing opportunities for underrepresented minority students to become scientists, science educators, and scientifically-informed community members, said his role has been to get those students excited about genomics and connect them with training programs at genome centers around the country.

“The study of genomics is more than discovering similarities between living organisms,” he said, adding that genomic investigations also are responsible for disease prevention and even cures. “Research in this area could lead to the development of new drugs to treat diseases like diabetes, better methods of crop production, better range management of land, and possibly discovering new and innovative ways to sustain the earth.”

In addition to advocacy work, Bitsóí has recently begun to explore intergenerational trauma, or the exposure of an earlier generation to a traumatic event that continues to affect subsequent generations.  As a key area of interest for Bitsóí, he plans to partner with other Native researchers to launch a research project studying the relationships between intergenerational/historical trauma and the relatively new field epigenetics.

“Epigenetics has already demonstrated that certain exposures, especially during periods of developmental vulnerability, can cause long-term harms to exposed individuals and sometimes their progeny,” he said. “Epigenetics invalidates the assumption that nature and nurture operate as independent forces in influencing human development and disease.”

Bitsóí is particularly interested in the numerous legal and ethical issues being raised by epigenetics, notably those regarding individual and societal responsibilities to prevent hazardous exposures, monitor health status, and provide care. 

“Epigenetics…adds a multi-generational dimension to environmentally-caused adverse health effects,” he said. “It also highlights the effects of inequality in living and working conditions, as well as a range of disparities in access to health care and other societal opportunities.

In closing, Bitsóí said that intergenerational or historical trauma has been a controversial topic for non-Native people, since there is an accepted notion that what happened in the past is in the past. However, scientific research in epigenetics has begun to demonstrate that intergenerational trauma is real and has an impact on present-day populations – and what we experience will affect future generations.

Citing the BBC program called The Ghost in Your Genes, he said that epigenetics is based on a simple but contentious idea: that genes have a memory, and that the lives and environments of our grandparents can directly affect us decades later, despite us never experiencing these things ourselves, and the notion that what we do and how we lives could in turn affect our grandchildren.

“Native healers, medicine people, and elders have always known this, and it is common knowledge in Native oral traditions,” said Bitsóí.  To undergird this statement, he cited the work of Bryan Brayboy (Lumbee) in Tribal Critical Race theory: Stories are not separate from theory; they make up theory and are, therefore, real and legitimate sources of data and ways of being.

SC14 Virtual Booth Tours

AMD SC14 video AMD Virtual Booth Tour @ SC14
Click to Play Video
Cray SC14 video Cray Virtual Booth Tour @ SC14
Click to Play Video
Datasite SC14 video DataSite and RedLine @ SC14
Click to Play Video
HP SC14 video HP Virtual Booth Tour @ SC14
Click to Play Video
IBM DCS3860 and Elastic Storage @ SC14 video IBM DCS3860 and Elastic Storage @ SC14
Click to Play Video
IBM Flash Storage
@ SC14 video IBM Flash Storage @ SC14  
Click to Play Video
IBM Platform @ SC14 video IBM Platform @ SC14
Click to Play Video
IBM Power Big Data SC14 video IBM Power Big Data @ SC14
Click to Play Video
Intel SC14 video Intel Virtual Booth Tour @ SC14
Click to Play Video
Lenovo SC14 video Lenovo Virtual Booth Tour @ SC14
Click to Play Video
Mellanox SC14 video Mellanox Virtual Booth Tour @ SC14
Click to Play Video
Panasas SC14 video Panasas Virtual Booth Tour @ SC14
Click to Play Video
Quanta SC14 video Quanta Virtual Booth Tour @ SC14
Click to Play Video
Seagate SC14 video Seagate Virtual Booth Tour @ SC14
Click to Play Video
Supermicro SC14 video Supermicro Virtual Booth Tour @ SC14
Click to Play Video