Accelerating Brain Research with Supercomputers

By Aaron Dubrow

August 5, 2013

The brain is the most complex device in the known universe. With 100 billion neurons connected by a quadrillion synapses, it’s like the world’s most powerful supercomputer on steroids. To top it all off, it runs on only 20 watts of power… about as much as the light in your refrigerator.

These were a few of the introductory ideas discussed by Terrence Sejnowski, Director of the Computational Neurobiology Laboratory at the Salk Institute for Biological Studies, a co-director of the Institute for Neural Computation at UC San Diego, an investigator with the Howard Hughes Medical Institute and a member of the advisory committee to the director of National Institutes of Health (NIH) for the BRAIN (Brain Research through Application of Innovative Neurotechnologies) Initiative, which was launched in April 2013.

“I was in the White House when the program was announced,” Sejnowski recalled. “It was very exciting. The President was telling me that my life’s work was going to be a national priority over the next 15 years.”

At that event, the NIH, the National Science Foundation, and the Defense Advanced Research Projects Agency announced their commitment to dedicate about $110 million for the first year to develop innovative tools and techniques that will advance brain studies, which will ramp up as the Initiative gains ground.

In a recent talk in San Diego at the XSEDE13 conference — the annual meeting of researchers, staff and industry who use and support the U.S. cyberinfrastructure — Sejnowski described the rapid progress that neuroscience has made over the last decade and the challenges ahead. High-performance computing, visualization and data management and analysis will play critical roles in the next phase of the neuroscientific revolution, he said. 

A deeper understanding of the brain would advance our grasp of the processes that underlie mental function. Ultimately it may also help doctors comprehend and diagnose mental illness and degenerative diseases of the brain and possibly even intervene to prevent these diseases in the future.

“Not only can we understand what happens when the brain is functioning normally, maybe we can understand what’s happening when it’s not functioning right, as in mental disorders,” he said.

Currently, this dream is a long way off. Brain activity occurs at all scales from the atomic to the macroscopic level, and each behavior contributes to the working of the brain. Sejnowski explained the challenge of understanding even a single aspect of the brain by showing a series of visualizations that illustrated just how interwoven and complex the various components of the brain are. 

One video [pictured below] examined how the axons, dendrites and other components fit together in a small piece of the brain, called the neuropil. He likened the structure to “spaghetti architecture.” A second video showed what looked like fireworks flashing across many regions of the brain and represented the complex choreography by which electrical signals travel in the brain. 

Despite the rapid rate of innovation, the field is still years away from obtaining a full picture of a mouse’s or even a worm’s brain. It would require an accelerated rate of growth to reach the targets that neuroscientists have set for themselves. For that reason, the BRAIN Initiative is focusing on new technologies and tools that could have a transformative impact on the field.

“If we could record data from every neuron in a circuit responsible for a behavior, we could understand the algorithms that the brain uses,” Sejnowski said. “That could help us right now.”

Larger, more comprehensive and capable supercomputers, as well as compatible tools and technologies, are needed to deal with the increasing complexity of the numerical models and the unwieldy datasets gleaned by fMRI or other imaging modalities. Other tools and techniques that Sejnowski believes will be required include industrial-scale electron microscopy; improvements in optogenetics; image segmentation via machine learning; developments in computational geometry; and crowd sourcing to overcome the “Big Data” bottleneck.

“Terry’s talk was very inspiring for the XSEDE13 attendees and the entire XSEDE community,” said Amit Majumdar, technical program chair of XSEDE13. Majumdar directs the scientific computing application group at the San Diego Supercomputer Center (SDSC) and is affiliated with the Department of Radiation Medicine and Applied Sciences at UC San Diego. “With XSEDE being the leader in research cyberinfrastructure, it was great to hear that tools and technologies to access supercomputers and data resources are a big part of the BRAIN Initiative.”

For his part, over the past decade Sejnowski led a team of researchers to create two software environments for brain simulations, called MCell (or Monte Carlo Cell) and Cellblender. MCell combines spatially realistic 3D models of the geometry of the brain (as determined by brain scans and computational analysis), and simulates the movements and reactions of molecules within and between brain cells—for instance, by populating the brain’s 3D geometry with active ion channels, which are responsible for the chemical behavior of the brain. Cellblender visualizes the output of MCell to help computational biologists better understand their results.

Researchers at the Pittsburgh Supercomputing Center, the University of Pittsburgh, and the Salk Institute developed these software packages collaboratively with support from the National Institutes of Health, the Howard Hughes Medical Institute, and the National Science Foundation. The open-source software runs on several of the XSEDE-allocated supercomputers and has generated hundreds of publications.

MCell and Cellblender are a step in the right direction, but they will be stretched to their limits when dealing with massive datasets from new and emerging imaging tools. “We need better algorithms and more computer systems to explore the data and to model it,” Sejnowski said. “This is where the insights will come from — not from the sheer bulk of data, but from what the data is telling us.”

Supercomputers alone will not be enough either, he said. An ambitious, long-term project of this magnitude requires a small army of students and young professional to progress.

Sejnowski likened the announcement of the BRAIN Initiative to the famous speech where John F. Kennedy vowed to send an American to the moon. When Neil Armstrong landed on the moon eight years later, the average age of the NASA engineers that sent him there was 26-years-old. Encouraged by JFK’s passion for space travel and galvanized by competition from the Soviet Union, talented young scientists joined NASA in droves. Sejnowski hopes the same will be true for the neuroscience and computational science fields. 

“This is an idea whose time has come,” he said. “The tools and techniques are maturing at just the right time and all we need is to be given enough resources so we can scale up our research.”

The annual XSEDE conference, organized by the National Science Foundation’s Extreme Science and Engineering Discovery Environment (xsede.org) with the support of corporate and non-profit sponsors, brings together the extended community of individuals interested in advancing research cyberinfrastructure and integrated digital services for the benefit of science and society. XSEDE13 was held July 22-25 in San Diego; XSEDE14 will be held July 13-18 in Atlanta. For more information, visit https://conferences.xsede.org/xsede14

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire