Numascale Delivers Shared Memory Systems at Cluster Price with Virtually Unlimited Number of Cores and Memory

By Nicole Hemsoth

August 19, 2013

HPC Architectures

Current computer architectures have developed along two different branches, one with distributed memory with separate address domains for each node with message passing programming model and another with global shared memory with a common physical address domain for the whole system. The first category is present in massively parallel processors (MPPs) and clusters and the latter is present in the common servers, workstations, personal computers and symmetrical multiprocessing systems (SMPs) through multicore and multi-socket implementations. These two architectures represent distinctly different programming paradigms. The first one (MPP) requires programs that are explicitly written for message passing between processes where each process only has access to its local data. The second category (SMP) can be programmed by multithreading techniques with global access to all data from all processes and processors. The latter represents a simpler model that requires less code and it is also fully equivalent with the architecture and programming model in common workstations and personal computers used by all programmers every day.

Since clusters are composed of general purpose multicore/multisocket processing nodes, these represent a form of a hybrid of the two different architectures described above.

Numascale’s approach to scalable shared memory

Numascale’s NumaConnect extends the SMP programming model to be scaled up by connecting a larger amount of standard servers (up to 4096 with the current implementation) as one global shared memory system (GSM). Such a system provides the same easy-to-use environment as a common workstation, but with the added capacity of a very large shared physical address space and I/O all controlled by a single image operating system. This means that programmers can enjoy the same working environment as their favorite workstation and system administrators have only one system to relate to instead of a bunch of individual nodes found in a cluster. Besides, the SMP model also allows efficient execution of message passing (MPI) programs by using shared memory as communication channel between processes.

Distributed vs shared memory

In distributed memory systems (clusters and MPPs), the different processors residing on different nodes in the system have no direct access to each other’s memories (or I/O space). Data on a different node cannot be referenced directly by the programmer through a variable name like it can in a shared memory architecture. This means that data to be shared or communicated between those processes must be accessed through explisit programming by sending the data over a network. This is normally done through calls to a message passing library (like MPI) that invokes a software driver to perform the data transfer. The data to be sent was (most probably) produced by the sending process and such it resides in one of the caches belonging to the processor that runs the process. This will normally be the case since most MPI programs tend to communicate through relatively short messages in the order of a few bytes per message. The communication library will need to copy the data to a system send buffer and call the routine to setup a DMA transfer by the network adapter that in turn will request the data from memory and transfer it to a buffer on the receiving node. All-in all this requires a number of transactions across system datapaths as depicted in figure Figure 1.

 Message passing with traditional network technology, showing sending side only

Figure 1, Message passing with traditional network technology, showing sending side only

In a shared memory machine, referencing any variable anywhere in the entire dataset is accomplished though a single standard load register instruction. For the programmer, this is utterly simple compared to the task of writing the explisit MPI calls necessary to perform the same task.

The same operation for sending data in the case of running a message passing (MPI) program on a shared memory system only requires the sender to execute a single store instruction (preferably a non-polluting store instruction to avoid local cache pollution) to send up to 16 bytes (this is the maximum amount of data for a single instruction store in the x86 instruction set as of today). The data will be sent to an address that is pointing to the right location in the memory of the remote node as indicated in figure Figure 2.

Message Passing with shared memory, both sender and receiver shown
 

Figure 2, Message Passing with shared memory, both sender and receiver shown

Numascale’s technology is applicable for applications with requirements for memory and processors that exceed the amount available in a single commodity unit. Applications for servers that can benefit from NumaConnect span from HPC applications with requirements for 10-20TBytes of main memory for seismic data processing with advanced algorithms through applications in life sciences to Big Data analytics.

Deployment

Numa systems are available from system integrators world-wide based on the IBMx3755 server system and Supermicro 1042 or 2042 servers. Numascale operates a demo system where potential customers can run their tests. See Numascale website http://numascale.com for details, the request form for access to the demo system is http://numascale.com/numa_access.php.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire